Способ производства электротехнической анизотропной стали с повышенной проницаемостью

Изобретение относится к черной металлургии и может использоваться при производстве электротехнической анизотропной (трансформаторной) стали. Для формирования дополнительной ингибиторной фазы способ включает выплавку стали, содержащей, мас.%: углерод не более 0,05, марганец 0,15-0,4, кремний 3,0-3,5, медь 0,4-0,6, алюминий 0,018-0,03, азот 0,008-0,012, железо и неизбежные примеси - остальное, при выполнении соотношения: алюминий/азот в пределах 2,3-3,5, непрерывную разливку стали, черновую и чистовую горячую прокатки, двухкратную холодную прокатку с промежуточным обезуглероживающим отжигом для удаления углерода, азотирование в интервале температур 700-850°С в атмосфере, содержащей диссоциированный аммиак, высокотемпературный и выпрямляющий отжиги. 1 табл.

 

Предлагаемое изобретение относится к области черной металлургии, конкретнее к производству электротехнических сталей.

Известно, что магнитные свойства анизотропной электротехнической стали в значительной мере определяются степенью совершенства текстуры {110}<001> (ребровая текстура), формирующейся в ходе вторичной рекристаллизации. При переделе анизотропной стали необходимо выполнить ряд следующих условий, соблюдение которых позволит повысить совершенство текстуры:

1) стабилизация структуры матрицы включениями второй фазы (главным образом нитриды алюминия, сульфиды и селениды марганца или их комбинация);

2) преобладание в текстуре матрицы, легко поглощаемой октаэдрической ({111}<112>) компоненты текстуры;

3) наличие в текстуре матрицы достаточно острой ребровой компоненты, которая в ходе вторичной рекристаллизации интенсивно поглощает октаэдрическую.

При производстве высокопроницаемой стали для выполнения первого условия используют следующие два технологических направления:

1) создание оптимальной стабилизирующей фазы на первых этапах передела (выплавка, разливка, высокотемпературный нагрев слябов, горячая прокатка, отжиг горячекатаных рулонов) [1, 2];

2) азотирование металла в конечной толщине после (или в процессе) обезуглероживающего отжига [3, 4].

Второе условие в обоих случаях реализуется за счет холодной прокатки с высокой степенью деформации (85-90%) [5].

Для реализации третьего условия также в обоих случаях используется «теплая» (˜200°С) прокатка, обеспечивающая так называемое деформационное старение, а также модифицирование стали оловом.

Недостатком первого направления является необходимость высокотемпературного нагрева слябов. В процессе нагрева образуется «железная» окалина, которую необходимо непрерывно удалять, что обуславливает высокие трудовые, материальные и энергетические затраты.

Второе направление требует весьма точное сочетание параметров горячей прокатки, нормализации и термообработки в конечной толщине, что не всегда удается совместить. Небольшое отклонение параметров прокатки и термообработки от оптимума чревато ухудшением свойств стали вплоть до отбраковки части полос.

Предлагаемый в настоящей заявке вариант отличается от описанных тем, что он реализуется при двукратной холодной прокатке, не требует высокотемпературного нагрева слябов и деформационного старения, а также не требует «ювелирного» сочетания параметров прокатки и термообработки, т.е. характеризуется относительной простотой и стабильностью. Кроме того, в предлагаемом варианте отсутствует операция отжига горячекатаных полос, что значительно уменьшает затраты.

В качестве прототипа взят патент Японии [4], как наиболее близкое решение аналогичной технологической задачи. Стабилизация структуры частично осуществляется за счет нитридов алюминия, формирующихся при горячей прокатке, частично - образующихся при химико-термической обработке за счет азотирования в промежуточной или конечной толщине. Усиление октаэдрической компоненты в текстуре матрицы, равно как и обострение ребровой, осуществляется за счет введения в сталь меди (0,4-0,6 мас.%) и медленного нагрева металла в интервале температур возврата и первичной рекристаллизации (400-650°С).

Ниже в качестве примеров приведены результаты экспериментов, обосновывающих новизну и полезность настоящей заявки на патент.

Пример 1. Металл, содержащий 0,03 мас.% С, 0,17 мас.% Mn, 3,08 мас.% Si, 0,022 мас.% Al, 0,50 мас.% Cu и 0,008 мас.% N, выплавляли в кислородных конверторах и разливали на машинах непрерывного литья слябов. Слябы нагревали до температуры 1250°С и прокатывали на широкополосном стане горячей прокатки на толщину 2,5 мм. Температура завершения черновой прокатки составляла 1040-1050°С; чистовой прокатки 915-920°С; смотки полос 560-570°С. Далее металл подвергали травлению, первой холодной прокатке на толщину 0,7 мм, обезуглероживающему отжигу при температуре 850°С в увлажненной азотоводородной смеси, азотированию в атмосфере, содержащей диссоциированный аммиак, второй холодной прокатке на толщину 0,30 мм, нанесению термостойкого покрытия, высокотемпературному отжигу. Для сравнения часть металла не подвергали азотированию.

Из данных таблицы 1 следует, что введение в технологический цикл операции азотирования стали после завершения обезуглероживания способствует увеличению значений индукции с 1,86-1,87 Тл до 1,90-1,94 Тл, характерных для высокопроницаемой стали.

Таблица 1

Сопоставление магнитных свойств стали, полученной по стандартной технологии и технологии с азотированием в промежуточной толщине
Вариант технологииНомер испытанияСодержание азота после термообработки, %Магнитные свойства
В800, ТлP1,7/50, Вт/кг
Стандартный (без азотирования)10,0081,861,23
20,0081,871,19
С азотированием в промежуточной толщине10,0111,901,10
20,0151,921,05
30,0151,921,04
40,0171,941,00
50,0201,911,08
60,0261,901,11

Важно учесть, что эффективность азотирования реализуется только при переделе стали с умеренной степенью стабилизации структуры нитридными включениями, формирующимися при горячей прокатке.

При пониженной степени стабилизации структуры в процессе нагрева металла при высокотемпературном отжиге в интервале температур 700-950°С развивается собирательная рекристаллизация (до аномального роста зерна). Вторичная рекристаллизация происходит в условиях повышенной стабилизации структуры (увеличенный размер зерен матрицы и появление дополнительной ингибиторной фазы за счет азотирования), что способствует росту зерен с наиболее совершенной ребровой ориентировкой.

Из результатов исследований следует, что наилучшие магнитные свойства имеет сталь, которая характеризовалась отношением алюминия к азоту в интервале 2.3-3.5.

Таким образом, введение операции азотирования стали в промежуточной толщине в технологический цикл передела стали нитридного варианта позволяет получать высокопроницаемую сталь.

Источники информации

1. Европейский патент ЕР №219611, 1986 г.

2. Европейский патент ЕР №420238, 1990 г.

3. Европейский патент ЕР №339474, 1989 г.

4. Европейский патент ЕР №392534, 1990 г.

5. Европейский патент ЕР №566986, 1993 г.

Способ производства анизотропной электротехнической стали, включающий выплавку стали, содержащей углерод, кремний, марганец, алюминий, азот, медь, железо и неизбежные примеси, непрерывную разливку стали, горячую прокатку, двухкратную холодную прокатку с обезуглероживающим отжигом полосы, азотирование, нанесение термостойкого покрытия и высокотемпературный отжиг, отличающийся тем, что осуществляют выплавку стали, содержащей компоненты при следующем соотношении, мас.%:

углеродне более 0,05
марганец0,15-0,4
кремний3,0-3,5
медь0,4-0,6
алюминий0,018-0,03
азот0,005-0,012
железо и неизбежные примесиостальное,

причем отношение алюминия к азоту устанавливают в пределах 2,3-3,5, а азотирование ведут в интервале температур 700-850°С в атмосфере, содержащей диссоциированный аммиак после обезуглероживающего отжига в промежуточной толщине полосы.



 

Похожие патенты:

Изобретение относится к области металлургии и может быть использовано при производстве нанокристаллических материалов в виде ленты. .

Изобретение относится к области металлургии, в частности к горячекатаному стальному листу и способу его производства. .
Изобретение относится к области металлургии, в частности к неориентированной электротехнической листовой стали, используемой в качестве материала железных сердечников в электротехнической аппаратуре, и к способу ее производства.

Изобретение относится к области металлургии для получения неориентированной электротехнической стали, которая нашла широкое использование в качестве магнитных материалов сердечников во множестве электрических машин и устройств, в частности в электродвигателях, где требуются низкие потери в магнитной системе и высокая магнитная проницаемость во всех направлениях полосы.

Изобретение относится к производству непрерывно-литой полосы из электротехнической стали с ориентированным зерном. .
Изобретение относится к производству полос их электротехнической стали с ориентированными зернами. .

Изобретение относится к области металлургии, а именно к электротехническим текстурованным листовым сталям. .

Изобретение относится к черной металлургии, конкретно к производству холоднокатаных полос из изотропных электротехнических сталей, используемых для изготовления магнитопроводов электродвигателей.
Изобретение относится к черной металлургии и может использоваться при производстве электротехнической анизотропной (трансформаторной) стали
Изобретение относится к области черной металлургии и может использоваться при производстве полосы из электротехнической анизотропной стали
Изобретение относится к области черной металлургии

Изобретение относится к технологии изготовления электротехнической стали с ориентированной зернистой структурой, и может найти применение в электротехнической промышленности

Изобретение относится к технологии производства листа из текстурированной электротехнической стали

Изобретение относится к области металлургии, в частности к производству листа из текстурованной электротехнической стали

Изобретение относится к производству листа электротехнической стали для изготовления сердечника трансформатора или другого электрического оборудования

Изобретение относится к области металлургии, в частности производству листа текстурированной электротехнической стали с улучшенными характеристиками потерь в сердечнике
Наверх