Многоканальный рентгеновский спектрометр

Использование: для неразрушающего контроля элементного состава образцов методом рентгеновской флуоресценции. Сущность: многоканальный рентгеновский спектрометр содержит источник рентгеновского излучения, держатель образца и установленные вокруг оси симметрии рентгеноспектральные каналы, каждый из которых включает в себя входную щель, кристалл на подложке, выходную щель и детектор рентгеновского излучения, при этом основой каждого канала являются две вырезанные по дуге пластины, средние линии которых соответствуют фокальной окружности, а каналы расположены с боковым наклоном и возможностью перекрытия в вертикальной проекции. Технический результат: расширение регистрируемого спектра, а также увеличение точности определяемых концентраций. 2 ил.

 

Предназначен для неразрушающего контроля элементного состава образцов методом рентгеновской флуоресценции. Может применяться в промышленности, сельском хозяйстве, геологоразведке и т.д.

Изобретение относится к многоканальным кристалл-дифракционным спектрометрам. Традиционный подход к конструированию таких аппаратов заключается в разработке каждого спектрометрического канала в виде отдельного моноблока. Последние устанавливаются в едином корпусе, как правило, вокруг общей оси симметрии, вдоль которой расположен источник рентгеновского излучения и пробозагрузочное устройство. Это позволяет независимо настраивать каждый канал и произвольно комбинировать их состав, но приводит к увеличению общего веса прибора. Одновременное размещение по окружности большого количества каналов вынуждает располагать их дальше от пробы. Данное обстоятельство ведет к падению интенсивности регистрируемого от пробы излучения, для восстановления которой приходится увеличивать мощность рентгеновской трубки и, следовательно, всего спектрометра.

С целью устранения перечисленных недостатков необходимо создать облегченную бескорпусную конструкцию каждого канала. Это, в частности, было сделано в российском изобретении №1617346 от 05.07.85, где несущей базой каждого канала является одна вертикальная пластина. На ее торцевых срезах установлены кристалл, выходная щель и детектор. Однако надежное крепление несущей пластины к общему основанию оказывается непростой задачей, для решения которой нужны дополнительные переходные детали. Кроме того, даже в таком варианте не удается разместить больше 10 каналов одновременно.

Чтобы разрешить указанные проблемы, необходимо иметь предельно компактное исполнение канала, в идеале ограниченное только пространством распространения регистрируемых рентгеновских лучей.

В предлагаемом изобретении могут быть использованы фокусирующие схемы Иоганна или Иогансона. Несущей основой канала являются две вырезанные по дуге пластины, средние линии которых соответствуют фокальной окружности, как показано на фиг.1. Пластины 1 расположены параллельно и удерживают узел входной щели 2, подложку кристалла 3, выходную щель 4 и детектор 5. Данная конструкция каналов позволяет размещать их без помех друг другу по окружности с боковым наклоном около 45°, как изображено на фиг.2. Крепление канала осуществляется двумя винтами. Один из них фиксирует узел входной щели на кольцевом выступе общего основания, второй - прижимает внешнюю поверхность одной из несущих платин канала к косому торцевому срезу общего опорного кольца 6.

Благодаря частичному перекрытию в вертикальной проекции такое расположение дает возможность при сохранении габаритов прибора устанавливать в 1.5-2 раза больше каналов, чем в традиционном варианте. Данная конструкция многоканального спектрометра была реализована на опытном макете, где свободно разместились 18 каналов одновременно. При этом есть необходимый для первичной настройки каждого канала удобный доступ к подложке кристалла и выходной щели.

Увеличение количества каналов расширяет регистрируемый спектр, что значительно упрощает его математическую обработку и увеличивает точность рассчитываемых концентраций.

Многоканальный рентгеновский спектрометр, содержащий источник рентгеновского излучения, держатель образца и установленные вокруг оси симметрии рентгеноспектральные каналы, каждый из которых включает в себя входную щель, кристалл на подложке, выходную щель и детектор рентгеновского излучения, отличающийся тем, что основой каждого канала являются две вырезанные по дуге пластины, средние линии которых соответствуют фокальной окружности, а каналы расположены с боковым наклоном и возможностью перекрытия в вертикальной проекции.



 

Похожие патенты:

Изобретение относится к элементному анализу с использованием спектрометров рентгенофлуоресцентного анализа с энергетической дисперсией и может найти применение в перерабатывающих отраслях промышленности, геологии и металлургии для количественного определения элементов в различных материалах.

Изобретение относится к оптике. .

Изобретение относится к области аналитической химии, в частности к способам определения химического состава сварных швов. .

Изобретение относится к рентгенофлуоресцентному анализу жидких проб и может быть использовано при анализе медикобиологических препаратов, промышленных и сточных вод и др.

Изобретение относится к рентгенофлуоресцентному анализу (РФА) жидких проб и может быть использовано при анализе медикобиологических препаратов, промышленных и сточных вод, и др.

Изобретение относится к области рентгенофлуоресцентного анализа микроколичеств вещества с использованием полного внешнего отражения и предназначено для элементного анализа сверхчистых поверхностей и сухих остатков растворов и может быть использовано преимущественно для оснащения заводских и передвижных лабораторий различного назначения.

Изобретение относится к физическим методам анализа химического и фазового состава вещества, объединяет два метода - рентгенофлуоресцентный и рентгенофазовый, и может быть использовано в различных отраслях промышленности, при исследовании минерального сырья, горных пород и почв, при определении концентраций минералов, промпродуктов и т.п

Изобретение относится к области рентгенофлуоресцентных методов анализа и может быть использовано при анализе элементного состава материалов, например, в геологии

Изобретение относится к измерительной технике и может быть использовано в нефтедобывающей промышленности для контроля дебита нефтяных скважин
Наверх