Способ получения многокомпонентных смесевых топлив и устройство для его осуществления

Изобретение относится к способам получения многокомпонентных смесевых топлив и может быть использовано для обработки существующих топлив и при получении новых видов смесевых топлив, например, на базе веществ растительного происхождения, продуктов жизнедеятельности живых организмов и отходов агропромышленного комплекса. В процессе обработки смесевых топлив за счет циркуляции компонентов через гидродинамическое кавитационное устройство создают периодические отрицательные напряжения в зоне обработки компонентов в рабочей емкости, приводящие к периодическому засасыванию внутрь устройства компонентов в режиме автоколебаний и генерированию гидродинамических колебаний давления в полосе частот 6-50000 Гц. Гидродинамическое кавитационное устройство включает осесимметричную вихревую камеру. Ось симметрии входного канала расположена под углом и смещена в боковом направлении по отношению к оси симметрии вихревой камеры. Выходной канал расположен соосно с вихревой камерой. Технический результат состоит в получений гомогенного смесевого топлива с высокими потребительскими характеристиками. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к области топливно-энергетического комплекса и способам получения смесевых топлив, в том числе и биотоплив, включающие устройства для их получения, и может быть использовано при получении новых видов смешанных топлив как на базе известных штатных топлив, так и веществ растительного происхождения, продуктов жизнедеятельности живых организмов и отходов агропромышленного комплекса.

Известны способы и соответствующие устройства их осуществления (патенты: РФ №2221633, 2075619, 2115176)), в которых смеси подвергаются кавитационной обработке.

Недостатком данных способов и соответствующих устройств является невысокая эффективность процесса вследствие относительно низких частот колебаний, которыми обрабатывают жидкую среду, поскольку относительная скорость движения микрочастиц жидкости зависит от квадрата частоты колебаний.

Известно устройство для приготовления эмульсий, в том числе топливных, содержащее приемный бак, подающие насосы, бак-мерник, бак для эмульсии, гидродинамический эмульгатор и трубопроводы для подачи жидких сред, эмульсора и раздачи эмульсии (а.с. СССР №637138, кл. B01 3/08, 06.07.77).

Недостатком этого устройства является то, что при хранении эмульсии в баке происходит расслаивание эмульсии, что снижает ее качество и уменьшает срок ее хранения.

Наиболее близким по технической сути и достигаемому результату является принятый за прототип способ обработки жидких сред, основанный на взаимодействии с препятствием вытекающей из сопла жидкой струи при резком изменении ее направления, возбуждении колебаний волн давления и кавитации (а.с. СССР №497058, кл. B06B 1/15).

В этом способе обработка жидких сред осуществляется генераторам колебаний в условиях нерегулируемой циркуляции жидкой среды во всем объеме смешиваемой среды при случайном распределении глобул диспергируемых компонентов и затухании колебаний волн давления на небольшом удалении от генератора.

Поэтому недостатком данного способа является то, что для качественного перемешивания требуются большие затраты (по времени и энергии) и он не дает гарантии получения высокодисперсных эмульсий. Известно устройство, принятое за прототип, содержащее приемный бак, подающие насосы, бак-мерник, гидродинамический эмульгатор, входной патрубок которого соединен с выходным патрубком бака для эмульсии (а.с. СССР №1060212, кл. B01 3/08, 23.03.82).

Недостатком этого устройства является то, что при циркуляции по замкнутому контуру не обеспечивается равномерность перемешивания вследствие концентрации легкого компонента на поверхности и не гарантируется прокачка через эмульгатор всех слоев объема смеси.

Задачей изобретения является повышение экономичности способа приготовления и улучшение потребительских качеств получаемых смесевых топлив.

Техническим результатом данного изобретения, заключающегося в способе получения смесевых топлив в режиме автоколебаний и устройстве для его осуществления, является получение гомогенного топлива с высокими потребительскими свойствами и теплофизическими характеристиками.

Вышеуказанный технический результат достигается тем, что в предлагаемом способе получения многокомпонентных смесевых топлив в режиме автоколебаний, предусматривающем помещение компонентов в рабочую емкость и воздействие на них потоком жидкости от устройства, подсоединенного трубопроводной системой к выходу насоса, вход которого, в свою очередь, соединен посредством трубопроводной системы с рабочей емкостью, заполненной компонентами, осуществляют циркуляцию обрабатываемого смесевого топлива или компонентов топлива через гидродинамическое кавитационное устройство в режиме периодических отрицательных напряжений на обрабатываемую среду, с попеременным засасыванием внутрь гидродинамического кавитационного устройства объемов обрабатываемой среды в режиме автоколебаний и генерирование гидродинамических колебаний давления в полосе частот 6-50000 Гц, при этом получение многокомпонентных смешанных топлив осуществляют при расходе смеси Q через гидродинамическое кавитационное устройство в соответствии с зависимостью:

6d2≤Q≤60d2,

где Q - расход жидкости через гидродинамическое кавитационное устройство (м3/с), d - эквивалентный диаметр входного канала (м), , S - площадь поперечного сечения по крайней мере одного входного канала (м2), π=3,1415.

Осуществляют циркуляцию обрабатываемого смесевого топлива или компонентов топлива через гидродинамическое кавитационное устройство в условиях нелинейного резонанса и генерирования колебаний волн давления, соответствующих собственной частоте колебаний многофазной среды, находящейся в емкости.

Технический результат достигается также тем, что в предлагаемом устройстве для получения многокомпонентных смесевых топлив, содержащем рабочую емкость, соединенную посредством трубопроводной системы с входом насоса, выход которого, в свою очередь, соединен с помощью трубопроводной системы с создающей поток жидкости насадкой, насадка выполнена в виде гидродинамического кавитационного устройства, включающем осесимметричную вихревую камеру, по крайней мере, с одним входным каналом, ось симметрии которого расположена под углом и смещена в боковом направлении по отношению к оси симметрии вихревой камеры, и соосно расположенным с вихревой камерой осесимметричным выходным каналом, при этом угол φ между осью симметрии входного отверстия и осью симметрии вихревой камеры изменяется в пределах от 30 до 110 градусов, боковое смещение входного канала гидродинамического кавитационного устройства по отношению к оси симметрии вихревой камеры определяется соотношением:

(D-d)/2≤x≤d,

где x - боковое смещение (м), d - диаметр входного канала (м), D - диаметр вихревой камеры (м).

В устройстве возбуждения колебаний давления жидкости, содержащем корпус с внутренней полостью, образованной внутренней камерой и выходным каналом в форме трубки Вентури, и тангенциальными входными отверстиями оси входных тангенциальных отверстий по отношению одна к другой расположены под углом, определяемом из соотношения:

Ψ=arccos(d/2R),

где Ψ - угол между осями входных тангенциальных отверстий (град.); R - внутренний радиус камеры устройства (м), d - диаметр входных тангенциальных отверстий (м).

Кроме того, обработка топлива в процессе его получения осуществляется при расходе обрабатываемой многофазной среды Q (м3/с) через входные тангенциальные отверстия, обеспечивающие скорость потока в них в диапазоне 30-130 м/с.

Сущность предлагаемого изобретения поясняется чертежами.

На Фиг.1 показана схема устройства для получения смесевого топлива. На Фиг.2 показано гидродинамическое кавитационное устройство в продольном разрезе; на Фиг.3 - гидродинамическое кавитационное устройство в поперечном разрезе.

Предлагаемое устройство для получения смесевого топлива состоит из насоса 1 (Фиг.1), подающего под давлением обрабатываемую жидкость по напорной линии через трубопроводную систему 4 к гидродинамическому кавитационному устройству 5, которое расположено ниже поверхности обрабатываемой среды 7 в рабочей емкости 6 на расстоянии от дна емкости не выше, чем 0,8H, где H - высота налива жидкости в емкости.

С помощью трубопроводной системы 9 обрабатываемая среда 7 из рабочей емкости 6 подается вновь на вход насоса 1 или непосредственно потребителю. С помощью вентилей 2 и манометра 3 осуществляется регулировка давления напора и расход жидкости через гидродинамическое кавитационное устройство 5, тем самым, изменяя амплитудно-частотную характеристику обработки топлива или его компонентов в режиме автоколебаний.

Гидродинамическое кавитационное устройство 5 выполнено в виде осесимметричной вихревой камеры 10 с, по крайней мере, одним входным каналом 11, ось симметрии которого расположена под углом Ψ (Фиг.2) к оси симметрии вихревой камеры 10.

Заявленный способ реализуется следующим образом. Рабочая емкость 6 заполняется обрабатываемым топливом или его компонентами. После включения насоса 1 в режиме рециркуляции по контуру: выход насоса 1 - трубопроводная система 4 - гидродинамическое кавитационное устройство 5 - компоненты смесевого топлива в рабочей емкости 7 - трубопроводная система 9 - вход насоса 1 с помощью вентилей 2 и манометра 3 устанавливают оптимальные расход обрабатываемой жидкости и давление нагнетания через гидродинамическое кавитационное устройство 5 в зависимости от физико-химических свойств обрабатываемого топлива или компонентов получаемого многокомпонентного топлива 8. Гидродинамическое кавитационное устройство 5 находится ниже поверхности жидкой среды 7. При поступлении обрабатываемой среды из трубопроводной системы 4 через канал 19 (Фиг.2) и, по крайней мере, одного входного канала 11 в осесимметричную вихревую камеру 10 поток обрабатываемой смеси или жидкости закручивается. Вследствие закрутки потока жидкости 17 в вихревой камере 10 на ее оси симметрии образуется область разряжения с развитой кавитацией, от которой отрываются кавитационные каверны с частотой в диапазоне от единиц до сотен Гц, насыщенные кавитационными пузырьками, которые схлопываются в рабочей емкости на определенном расстоянии от выхода из выходного канала 16, вызывая гидродинамические колебания давления в диапазоне частот 200-50000 Гц. Совпадение рабочих параметров гидродинамического генератора колебаний с собственной частотой колебаний многофазной среды в рабочей емкости приводит к автоколебательному режиму в рабочей емкости, что существенно интенсифицирует процесс обработки топлива или его компонентов.

Предлагаемый способ и устройство обеспечивают существенную интенсификацию процесса обработки смесевого топлива и, соответственно, обеспечивают гомогенность получаемого топлива, высокие потребительские свойства и теплофизические характеристики.

1. Способ получения многокомпонентных смесевых топлив в режиме автоколебаний, предусматривающий помещение компонентов в рабочую емкость и воздействие на них потоком жидкости от устройства, подсоединенного трубопроводной системой к выходу насоса, вход которого, в свою очередь, соединен посредством трубопроводной системы с рабочей емкостью, заполненной компонентами, отличающийся тем, что осуществляют циркуляцию обрабатываемого смесевого топлива или компонентов топлива через гидродинамическое кавитационное устройство в режиме периодических отрицательных напряжений на обрабатываемую среду, с попеременным засасыванием внутрь гидродинамического кавитационного устройства объемов обрабатываемой среды в режиме автоколебаний и генерирование гидродинамических колебаний давления в полосе частот 6-50000 Гц, при этом получение многокомпонентных смешанных топлив осуществляют при расходе смеси Q через гидродинамическое кавитационное устройство в соответствии с зависимостью:
6d2≤Q≤60d2,
где Q - расход жидкости через гидродинамическое кавитационное устройство (м3/с), d - эквивалентный диаметр входного канала (м), S - площадь поперечного сечения по крайней мере одного входного канала (м2), π=3,1415.

2. Устройство для получения многокомпонентных смесевых топлив, содержащее рабочую емкость, соединенную посредством трубопроводной системы с входом насоса, выход которого, в свою очередь, соединен с помощью трубопроводной системы с создающей поток жидкости насадкой, отличающееся тем, что насадка выполнена в виде гидродинамического кавитационного устройства, включающего осесимметричную вихревую камеру, по крайней мере, с одним входным каналом, ось симметрии которого расположена под углом и смещена в боковом направлении по отношению к оси симметрии вихревой камеры, и соосно расположенным с вихревой камерой осесимметричным выходным каналом, при этом угол φ между осью симметрии входного отверстия и осью симметрии вихревой камеры изменяется в пределах от 30 до 110°, боковое смещение входного канала гидродинамического кавитационного устройства по отношению к оси симметрии вихревой камеры определяется соотношением:
(D-d)/2≤x≤d,
где x - боковое смещение (м), d - диаметр входного канала (м), D - диаметр вихревой камеры (м).



 

Похожие патенты:

Изобретение относится к способу непрерывного получения эмульсии с особенно узким распределением капелек по размеру и может использоваться при полимеризации олефинов.

Изобретение относится к процессу приготовления эмульсий и может использоваться при получении эмульсии из взаимонерастворимых жидких компонентов с различной электропроводностью для двигателей внутреннего сгорания в автотранспорте и судоходстве, для приготовления водоэмульсионных красок в лакокрасочном производстве, а также лекарственных препаратов.

Изобретение относится к нефтяной, нефтеперерабатывающей, химической промышленности и может быть использовано для нагрева сырой нефти или нефтепродуктов с целью их последующей переработки.

Изобретение относится к технике приготовления эмульсий, которые могут быть использованы в качестве альтернативного топлива для двигателей внутреннего сгорания. .

Изобретение относится к способу приготовления раствора жидкой добавки в основной жидкости, в которой при ее перемешивании с жидкой добавкой при температуре, меньшей температуры Т G гелеобразования жидкой добавки, образуется гель, причем поток основной жидкости нагревают до температуры Т C, большей температуры окружающего воздуха и меньшей температуры ТG гелеобразования добавки, подают этот поток жидкости в смеситель, на входе в который потоку жидкости передается энергия, и добавляют за входом в смеситель в протекающий через него поток основной жидкости жидкую добавку, при этом такая жидкая добавка перемешивается в смесителе с основной жидкостью, а переданная потоку жидкости энергия препятствует образованию геля из добавляемой к основной жидкости жидкой добавки.

Изобретение относится к топливу мазутному маловязкому (ТММ), используемому в качестве технологического топлива на промышленных предприятиях теплоснабжения, на судах речного и морского флота.

Изобретение относится к области двигателестроения, в частности к способам и устройствам получения водотопливной эмульсии. .

Изобретение относится к двигателестроению, в частности к способам и устройствам получения и подачи топливно-водной эмульсии для питания двигателей внутреннего сгорания (ДВС).

Изобретение относится к устройствам, предназначенным для смешивания жидкостей, в частности к устройствам пожаротушения. .

Изобретение относится к фармацевтической химии, в частности к способу получения микроэмульсионной или субмикронной эмульсионной композиции «масло-в-воде» (м/в) для чрескожной доставки по меньшей мере одного фармацевтически активного ингредиента, включающий: а) смешение первой части, содержащей одно вещество из группы, включающей животные, минеральные или растительные масла, силаны, силоксаны, эфиры, жирные кислоты, жиры или алкоксилированные спирты, и одно или более липофильное ПАВ, и второй части, содержащей воду и одно гидрофильное ПАВ, б) нагревание смеси до температуры слияния фаз, при постоянном перемешивании с получением микроэмульсии или субмикронной эмульсии «масло в воде», в) охлаждение микроэмульсии или субмикронной эмульсии, г) добавление третьей части к микроэмульсии или субмикронной эмульсии при температуре от 2°С до температуры слияния фаз, третья часть при необходимости предварительно смешана и нагрета до растворения компонентов и содержит один компонент, выбранный из группы, включающей поверхностно-неактивные соединения амфифильного типа, ПАВ и воду, при условии, что если третья часть содержит воду, она также содержит и поверхностно-неактивное соединение амфифильного типа и/или ПАВ
Изобретение относится к эмульгирующим составам для изготовления эмульсий «вода в масле», применяемым в производстве эмульсионных взрывчатых веществ

Изобретение относится к ресурсо- и природосберегающим топливным системам питания транспортных средств, которые монтируются в штатной системе питания двигателя внутреннего сгорания (ДВС) на транспортном средстве и которые предусматривают использование топливных эмульсий типа «вода в углеводороде»

Изобретение относится к смешиванию жидкой краски и может использоваться для окрашивания пластмасс

Изобретение относится к двигателестроению, в частности к топливной аппаратуре двигателей внутреннего сгорания
Изобретение относится к способу приготовления наноэмульсий вода в масле или масло в воде, в котором дисперсная фаза распределена в дисперсионной фазе в виде капель, имеющих диаметр от 1 до 500 нм, включающему: 1) приготовление гомогенной смеси (1) вода/масло, характеризующейся поверхностным натяжением менее 1 мН/м, включающей воду в количестве от 30 до 70 масс.%, по меньшей мере два поверхностно-активных вещества с различным ГЛБ, выбираемыми из неионных, анионных, полимерных поверхностно-активных веществ, причем указанные поверхностно-активные вещества присутствуют в таком количестве, чтобы сделать смесь гомогенной; 2) разбавление смеси (1) в дисперсионной фазе, состоящей из масла или воды с добавлением поверхностно-активного вещества, выбираемого из неионных, анионных, полимерных поверхностно-активных веществ, причем количество дисперсионной фазы и поверхностно-активного вещества является таким, чтобы получить наноэмульсию с ГЛБ, отличающимся от ГЛБ смеси (1)

Изобретение относится к технологическим процессам, связанным с обработкой материалов, и может быть использовано для интенсификации процессов массообмена при тонкодисперсном измельчении и экстракции сырья и при получении микроэмульсий и наноэмульсий
Наверх