Устройство тепловой обработки призабойной зоны скважины

Изобретение относится к горному делу и может применяться для тепловой обработки продуктивного пласта высоковязкой нефти, восстановления гидравлической связи пласта со скважиной, увеличения нефтеотдачи пластов с высоковязкой нефтью и дебита скважин, а также возобновления эксплуатации нерентабельных скважин на нефть, природный газ, на пресные, минеральные и термальные воды, обеспечивает упрощение конструкции и увеличение удельной мощности устройства. Сущность изобретения: устройство включает герметичный корпус нагревателя, являющийся нулевым электродом, частично заполненный водой, центральный токовод, расположенный внутри корпуса и соединенный с фазным электродом, трубчатый изолятор. Согласно изобретению фазный электрод выполнен в виде тонкостенной трубы, расположенной внутри трубчатого изолятора диаметром 0,6-0,8 диаметра корпуса. При этом расстояние от основания корпуса до изолятора принято 0,5-1,5 диаметра корпуса, от верха корпуса - 0,1-0,3 длины корпуса. В нижней части изолятора установлен обратный клапан. 1 ил.

 

Устройство тепловой обработки призабойной зоны скважины

Изобретение относится к горному делу и может применяться для тепловой обработки продуктивного пласта высоковязкой нефти, восстановления гидравлической связи пласта со скважиной, увеличения нефтеотдачи пластов с высоковязкой нефтью и дебита скважин, а также возобновления эксплуатации нерентабельных скважин на нефть, природный газ, на пресные, минеральные и термальные воды.

Известен индукционный нагреватель (патент РФ №2010954, МПК Е21В 43/24, 1994.04.05), имеющий полый корпус, концентрический кожух, образующий с корпусом кольцевую полость с размещением в ней индукционных катушек. Однако нагреватель не предназначен для теплового воздействия на продуктивный пласт и служит для профилактики налипания асфальто-смоло-парафиновых отложений на стенах компрессорной трубы.

Известен скважинный генератор теплоты (А.С. №381726, МПК Е21В 43/24), включающий коаксиальное расположение электродов, к которым подключается постоянный ток. Однако скважинный генератор тепла не позволяет передать большие мощности для теплового воздействия на призабойную зону продуктивного пласта.

Известно устройство тепловой обработки призабойной зоны скважины (патент РФ №2169830, МПК Е21В 36/04, публ. 2001.06.27), принятое за прототип, включающее корпус нагревателя, силовой кабель питания, диски-электроды, установленные на токопроводе, размещенном по оси корпуса.

Недостатком этого устройства является сложность конструкции и низкая интенсивность конвекции из-за повышенного гидравлического сопротивления, создаваемого электродами.

Техническим результатом изобретения является увеличение удельной мощности скважинных электронагревателей за счет интенсификации теплообмена между водой внутри нагревателя и стенкой корпуса и упрощение конструкции.

Технический результат достигается тем, что в устройстве для тепловой обработки призабойной зоны скважины, включающем герметичный корпус нагревателя, являющийся нулевым электродом, частично заполненный водой, центральный токовод, расположенный внутри корпуса и соединенный с фазным электродом, трубчатый изолятор, согласно изобретению, фазный электрод выполнен в виде тонкостенной трубы, расположенной внутри трубчатого изолятора диаметром 0,6-0,8 диаметра корпуса, при этом расстояние от основания корпуса до изолятора принимают 0,5-1,5 диаметра корпуса, от верха корпуса - 0,1-0,3 длины корпуса, а в нижней части изолятора установлен обратный клапан.

Данное изобретение поясняется чертежом, где схематически изображен разрез электронагревателя.

Нагреватель состоит из корпуса 1, являющегося нулевым электродом, частично заполненного водой 2. Ток протекает через центральный токовод 3, фазный электрод 4, воду 2 и корпус 1, являющийся нулевым электродом. Трубчатый изолятор 5 между фазным электродом 4 и корпусом 1 разграничивает восходящий и нисходящий потоки воды и увеличивает путь тока. Центральный токовод 3 в термостойкой изоляционной оболочке 6 закреплен в проходном изоляторе 7. В нижней части трубчатого изолятора 5 закреплен обратный клапан 8.

Геометрические размеры изолятора выбираются в соответствии с условием достижения максимального значения теплоотдачи воды стенке корпуса. А именно, диаметр трубчатого изолятора принимают 0,6-0,8 диаметра корпуса из условия меньшей или равной скорости восходящего потока по сравнению с нисходящим, расстояние от основания корпуса до изолятора принимают 0,5-1,5 диаметра корпуса, исходя из наименьшего гидравлического сопротивления при развороте потока, расстояние от верха корпуса до изолятора принимают 0,1-0,3 длины корпуса, оно складывается из длины зоны, занятой сжатым газом и толщины слоя воды, необходимого для циркуляции воды вокруг изолятора.

Технический результат может быть достигнут и в более широком диапазоне геометрических размеров, но принятые цифры соответствуют более интенсивному теплообмену между водой и стенкой корпуса.

Длина фазного электрода рассчитывается из соображения предотвращения электролиза воды, т.е. плотность тока не должна превышать 1,5

Благодаря интенсификации теплообмена в электродном нагревателе за счет создания конвективного контура с малым гидравлическим сопротивлением достигается эффективное преобразование электрической энергии в теплоту.

Устройство для тепловой обработки призабойной зоны скважины, включающее герметичный корпус нагревателя, являющийся нулевым электродом, частично заполненный водой, центральный токовод, расположенный внутри корпуса и соединенный с фазным электродом, трубчатый изолятор, отличающееся тем, что фазный электрод выполнен в виде тонкостенной трубы, расположенной внутри трубчатого изолятора диаметром 0,6-0,8 диаметра корпуса, при этом расстояние от основания корпуса до изолятора принимают 0,5-1,5 диаметра корпуса, от верха корпуса - 0,1-0,3 длины корпуса, а в нижней части изолятора установлен обратный клапан.



 

Похожие патенты:

Изобретение относится к нефтяной и газовой отраслям промышленности и может быть использовано на нефтяных и газовых скважинах. .

Изобретение относится к нефтегазовой промышленности и может быть использовано в нефтяных скважинах при удалении асфальтено-смолисто-парафиновых отложений. .

Изобретение относится к области нефтедобычи, в частности к конструкции системы для питания погружного электродвигателя (ПЭД) и одновременного обогрева скважинной жидкости, и может быть использовано на промыслах при механизированной добыче нефти из скважин.

Изобретение относится к нефтяной и газовой промышленности и предназначено для предупреждения потери текучести нефтью, имеющей в своем составе асфальтены и смолы, и для предупреждения образования парафиновых и гидратных пробок в насосно-компрессорных трубах (НКТ) скважин.

Изобретение относится к области нефтедобывающего оборудования и может быть использовано в способах ликвидации и предотвращения асфальтопарафиновых пробок в нефтегазовых скважинах.

Изобретение относится к нефтяной и газовой отраслям промышленности и может быть использовано при эксплуатации скважины с нефтью, имеющей в своем составе асфальтены и смолы.
Изобретение относится к нефтяной промышленности и может найти применение при разработке залежи с высоковязкой нефтью или битумом. .
Изобретение относится к нефтедобывающей промышленности, а именно к области эксплуатации скважин, и может быть использовано при капитальном и подземном ремонте для ликвидации асфальто-смоло-парафиновых, гидратных и ледяных пробок в межтрубном и трубном пространстве скважин, оборудованных насосными установками.

Изобретение относится к области средств и методов измерения, преимущественно косвенного измерения параметров жидких сред, и может быть использовано для определения параметров потока смеси вода - нефть преимущественно при определении скорости потока, его температуры, а также соотношения нефти и воды в потоке.

Изобретение относится к нефтяной промышленности и конкретно может быть использовано для создания оптимального теплового режима в добывающих нефтяных скважинах для предотвращения в них парафиногидратных отложений.

Изобретение относится к нефтяной промышленности и предназначено для теплового воздействия на призабойную зону и нефтяной пласт, в том числе для предупреждения или разогрева парафино-гидратных отложений

Изобретение относится к нефтяной отрасли, в частности к фонтанной арматуре, и предназначено для предотвращения замерзания пластового флюида (смесь нефти, воды, газа, механических примесей) при добыче из скважины

Изобретение относится к нефтяной промышленности и предназначено для теплового воздействия на призабойную зону и пласт с тяжелыми нефтями или битумами, в том числе для предупреждения или разогрева парафино-гидратных отложений

Изобретение относится к нефтегазодобывающей промышленности и предназначено для определения тепловых параметров подземных структур на основе скважинных динамических тепловых измерений

Изобретение относится к горному делу и может применяться для тепловой обработки продуктивного пласта (ПП) высоковязкой нефти, восстановления гидравлической связи пласта со скважиной, увеличения нефтеотдачи ПП и дебита скважин, а также возобновления эксплуатации нерентабельных скважин на нефть, природный газ, на пресные, минеральные и термальные воды

Изобретение относится к области нефтедобычи, в частности к конструкции многофункциональной установки для одновременного питания погружного электродвигателя и обогрева скважинной жидкости, или раздельного выполнения указанных действий

Изобретение относится к нефте- и газодобывающей промышленности, и может быть использовано для активизации и возобновления притоков в нефтяных и газовых скважинах

Изобретение относится к нефтяной промышленности и может быть использовано для создания оптимального теплового режима в добывающих нефтяных скважинах и нефтепроводах для предотвращения асфальтосмолопарафиновых отложений в насосно-компрессорных трубах (НКТ) нефтяных скважин и нефтепроводах

Изобретение относится к нефтяной промышленности, в частности к повышению нефтеотдачи пластов
Наверх