Метод нанесения фоторезистивного слоя на подложку

Изобретение относится к технологии получения полупроводниковых приборов и интегральных схем, в частности к способам нанесения фоторезиста на кремниевую подложку для проведения технологических процессов фотолитографии. Техническим результатом изобретения является получение равномерного распределения фоторезиста по поверхности подложки и нанесение фоторезиста без включений различных загрязнений. Сущность изобретения: в способе нанесения фоторезистивного слоя на подложку проводят предварительную обработку подложек в ИК - сушке в печи при температурах 75±5°С, 85±5°С, 105±5°С и времени, равном 4±1 минуты, нанесение фоторезистивного слоя осуществляют методом центрифугирования в три этапа: 1 - растекание фоторезистивного слоя 10±5 мкм; 2 - сбрасывание излишков фоторезиста при скорости вращения столика VI=950±50 об/мин, VII=2800±200 об/мин; 3 - формирование профиля слоя фоторезиста толщиной - δФ/С=1,3±0,1 мкм, при этом разброс по толщине пленки слоя фоторезиста на подложках составляет 2,5±0,5%.

 

Изобретение относится к технологии получения полупроводниковых приборов и интегральных схем (ИС), в частности к способам нанесения фоторезиста на кремниевую подложку для проведения технологических процессов фотолитографии.

Известны способы нанесения фоторезиста на подложку, сущность которых состоит в нанесении фоторезиста на поверхность подложки: электростатическое, распыление и т.д. [1].

Недостатками этих способов являются неравномерность нанесения фоторезиста и включение различных загрязнений на поверхность подложки.

Целью изобретения является получение равномерности распределения фоторезиста по поверхности подложки и нанесение фоторезиста без включений различных загрязнений.

Поставленная цель достигается использованием метода нанесения фоторезиста центрифугированием, состоящим из трех этапов: 1 - растекание фоторезиста, 2 - сбрасывание излишков фоторезиста, 3 - формирование профиля слоя фоторезиста.

Сущность способа заключается в том, что на поверхности подложки формируют резистивный слой толщиной, равной 1,3±0,1 мкм. Подложки предварительно подвергают обработке в инфракрасной (ИК) сушке в печи при температурах 75±5°С, 85±5°С, 105±5°С и времени 4±1 минуты. Затем нанесение фоторезистивного слоя осуществляется методом центрифугирования в три этапа: 1 - растекание фоторезистивного слоя 10±5; 2 - сбрасывание излишков фоторезиста при скорости вращения столика VI=950±50 об/мин, VII=2800±200 об/мин; 3 - формирование профиля слоя фоторезиста.

Предлагаемый способ отличается от прототипа тем, что нанесение фоторезистивного слоя на подложку осуществляется с помощью изменения скорости вращения столика. Изменение скорости вращения столика от 900 до 3000 об/мин методом центрифугирования влияет на равномерность толщины формируемых фоторезистивных слоев, причем толстый слой у края подложки уменьшается при более высоких скоростях вращения. Это связано с различной вязкостью фоторезистивного слоя, что вызвано неодинаковыми условиями формирования слоя, поскольку скорость растекания резиста растет в квадрате по отношению к радиусу при удалении от центра подложки.

Контроль качества нанесения фоторезистивного слоя определяется с помощью микроскопа МИИ-4. Разброс по толщине пленки слоя фоторезиста на подложках составляет 3,0±0,5%.

Сущность изобретения подтверждается следующими примерами:

ПРИМЕР 1. Процесс проводят на установке «08ФН-125/200-004». Подложки предварительно подвергают обработке в ИК-сушке при температурах, равных 85±5°С, 95±5°С, 105±5°С и времени 4±1 минуты. Затем нанесение фоторезистивного слоя осуществляется методом центрифугирования в три этапа:

1 - растекание фоторезистивного слоя 10±5;

2 - сбрасывание излишков фоторезиста при частоте вращения VI=850±50 об/мин, VII=2200±200 об/мин;

3 - формирование профиля слоя фоторезиста.

Контроль качества нанесения фоторезистивного слоя определяется с помощью микроскопа МИИ-4.

Толщина фоторезистивного слоя δФ/С=1,6±0,1 мкм.

Разброс по толщине пленки фоторезистивного слоя на подложках составляет 5,5±0,5%.

ПРИМЕР 2. Способ осуществляют аналогично примеру 1. Процесс проводят при скорости вращения столика:

VI=850±50 об/мин, VII=2200±200 об/мин.

Толщина фоторезистивного слоя δФ/С=1,5±0,1 мкм.

Разброс по толщине пленки слоя фоторезиста на подложках составляет 4,5+0,5%.

ПРИМЕР 3. Способ осуществляют аналогично примеру 1. Процесс проводят при скорости вращения столика:

VI=950±50 об/мин, VII=2600±200 об/мин.

Толщина фоторезистивного слоя δФ/С=1,5±0,1 мкм.

Разброс по толщине пленки слоя фоторезиста на подложках составляет 3,5±0,5%.

ПРИМЕР 4. Способ осуществляют аналогично примеру 1. Процесс проводят при скорости вращения столика:

VI=950±50 об/мин, VII=2800±200 об/мин.

Толщина фоторезистивного слоя δФ/С=1,3±0,1 мкм.

Разброс по толщине пленки слоя фоторезиста на подложках составляет 2,5±0,5%.

Как следует из результатов опытов, одним из самых эффективных технологических режимов нанесения фоторезистивного слоя, является процесс, который проводят при скорости вращения стола, равной:

VI=950±50 об/мин, VII=2800±200 об/мин.

Таким образом, нанесение фоторезистивного слоя на поверхность подложки методом центрифугирования позволяет получить качественный и равномерный фоторезистивный слой для дальнейших фотолитографических операций.

Литература

1. Технология и конструкции микросхем, микропроцессоров и микросборок. / Под редакцией Л.А.Коледов. - М.: «Радио и связь», 1989, - с.400.

Метод нанесения фоторезистивного слоя на подложку, включающий предварительную обработку подложек в ИК-сушке в печи при температурах 75±5°С, 85±5°С, 105±5°С и времени, равном 4±1 мин, отличающийся тем, что нанесение фоторезистивного слоя осуществляется методом центрифугирования в три этапа: 1 - растекание фоторезистивного слоя - 10±5 мкм; 2 - сбрасывание излишков фоторезиста при скорости вращения столика VI=950±50 об./мин, VII=2800±200 об./мин; 3 - формирование профиля слоя фоторезиста, толщина фоторезистивного слоя - δФ/C=1,3±0,1 мкм, разброс по толщине пленки слоя фоторезиста на подложках составляет 2,5±0,5%.



 

Похожие патенты:
Изобретение относится к полупроводниковой технологии и может быть использовано при создании современных полупроводниковых приборов и структур для микро- и наноэлектроники, в частности, при разработке наноразмерных приборов на основе кремния или структур Si/SiGe/Si с целью обеспечения проводимости тонких (субмикронных) полупроводниковых слоев.
Изобретение относится к технологии тонкопленочных приборов. .

Изобретение относится к чувствительным к излучению композициям с изменяющейся диэлектрической проницаемостью, обеспечивающим модель диэлектрической проницаемости, используемой в качестве изоляционных материалов или конденсатора для схемных плат.

Изобретение относится к полупроводниковому производству, в частности к процессам фотолитографии при нанесении фоторезиста на пластины, а также может использоваться при получении других полимерных покрытий центрифугированием.

Изобретение относится к устройствам нанесения покрытий посредством центрифугирования и может быть использовано, в частности, для создания светочувствительного слоя на полупроводниковых пластинах и фотошаблонах.

Изобретение относится к электронной технике и может быть использовано в литографических процессах при изготовлении полупроводниковых приборов, интегральных схем и печатных плат.

Изобретение относится к микроэлектронике и может быть использовано на литографических операциях при изготовлении полупроводниковых приборов и интегральных микросхем.

Изобретение относится к микроэлектронике и может быть использовано на литографических операциях при изготовлении полупроводниковых приборов и интегральных микросхем.

Изобретение относится к технике полупроводникового производства и может быть использовано при нанесении фоторезиста на полупроводниковые пластины, а также другие подложки в процессе выполнения операций фотолитографии

Изобретение относится к оборудованию для электронной промышленности, а именно к оборудованию для нанесения фоторезиста на подложки методом центрифугирования. Технический результат - уменьшение времени изготовления и увеличение выхода годных изделий - достигается тем, что устройство для нанесения фоторезиста содержит защитный корпус с крышкой, держатель подложек, гайки, вал центрифуги. Защитный корпус закреплен на валу центрифуги. Держатель подложек установлен на вал центрифуги и закреплен гайками. Держатель подложек содержит основание, крышку, ограничительные штифты и заливочные отверстия. На внутренних поверхностях основания и крышки держателя выполнены сквозные пазы со ступенчатой боковой поверхностью для установки подложек. На периферийных частях держателя подложек установлены ограничительные штифты. В крышке держателя подложек выполнены дозировочные отверстия. 1 з.п. ф-лы, 3 ил.

Группа изобретений относится к способам, предназначенным для изготовления полупроводниковых приборов на твердом теле с использованием светочувствительных составов, например фоторезистов, содержащих диазосоединения в качестве светочувствительных веществ, а именно к способам формирования фоторезистной маски позитивного типа, которые могут найти применение в области микроэлектроники для получения изделий при помощи технологических способов, включающих стадию фотолитографии. Способ формирования фоторезистной маски позитивного типа включает нанесение на подложку позитивного фоторезиста, содержащего новолачную смолу и орто-нафтохинондиазидное соединение, использующееся в качестве светочувствительной компоненты, сушку, экспонирование и проявление. При этом в состав фоторезиста непосредственно перед нанесением его на подложку вводят 1,3-динитробензилиденмочевину, либо 1,5-дифенилсемикарбазид, либо N,N'-метилен-бисакриламид в количестве 5-15% по отношению к количеству орто-нафтохинондиазидного соединения. Результатом является улучшение качества края фоторезистной маски, увеличение срока службы используемого фоторезиста. 3 н.п. ф-лы, 1 табл.

Изобретение относится к технологии обработки кремниевых монокристаллических пластин и может быть использовано для создания электронных структур на его основе. Способ электрической пассивации поверхности кремния тонкопленочным органическим покрытием из поликатионных молекул включает предварительную подготовку подложки для создания эффективного отрицательного электростатического заряда, приготовление водного раствора поликатионных молекул, адсорбцию поликатионных молекул на подложку в течение 10-15 минут, промывку в деионизованной воде и сушку подложки с осажденным слоем в потоке сухого воздуха, при этом в качестве подложки использован монокристаллический кремний со слоем туннельно прозрачного диоксида кремния, с шероховатостью, меньшей или сравнимой с толщиной создаваемого покрытия, предварительную подготовку кремниевой подложки проводят путем ее кипячения при 75°C в течение 10-15 минут в растворе NH4OH/H2O2/H2O в объемном соотношении 1/1/4, для приготовления водного раствора поликатионных молекул использован полиэтиленимин, а во время адсорбции поликатионных молекул на подложку осуществляют освещение подложки со стороны раствора светом с интенсивностью в диапазоне 800-1000 лк, достаточной для изменения плотности заряда поверхности полупроводниковой структуры за время адсорбции. Техническим результатом изобретения является уменьшение плотности поверхностных электронных состояний и увеличение эффективного времени жизни неравновесных носителей заряда на границах раздела «органический слой - диэлектрик» и «диэлектрик - полупроводник». 5 ил., 6 табл., 3 пр.

Изобретение относится к технологии изготовления приборов микро- и наноэлектроники. Предложен способ консервации твердотельной поверхности, включающий последовательно осуществляемые стадию предварительной подготовки поверхности к консервации и стадию нанесения консервирующего покрытия. Первую стадию осуществляют неповреждающей очисткой твердотельной поверхности, приводящей к формированию на поверхности полярных групп. Вторую - с использованием карбонилдиимидазола, формируя покрытие, содержащее по крайней мере два монослоя, сформированных из указанного вещества. Предложено также консервирующее твердотельную поверхность покрытие, содержащее монослой, расположенный на твердотельной поверхности, и по крайней мере один монослой между внешней средой и указанным монослоем. Монослой, расположенный на поверхности, жестко связан с ней, предназначен для осуществления функционализации твердотельной поверхности. Дополнительно выполненный монослой, граничащий с внешней средой, предназначен для защиты твердотельной поверхности от воздействия среды и в целях функционализации выполнен легкоудаляемым. Технический результат - обеспечиваются предотвращение повреждения конструктивных элементов твердотельной поверхности при консервации/расконсервации и быстрая расконсервация в случае сенсоров с одновременной функционализацией. 2 н. и 7 з.п. ф-лы, 4 ил., 7 пр.

Изобретение относится к взрывной фотолитографической технологии и может быть использовано, когда получение рабочего рисунка из активного материала (металла или полупроводника) методами избирательного химического или плазмохимического травления через фоторезистную маску затруднено или нецелесообразно в связи с повышенной химической стойкостью к травлению активного материала. Предложен способ взрывной литографии, включающий нанесение на подложку слоя полимерного фоторезиста и его сушку, избирательное облучение слоя фоторезиста, получение путем проявления и сушки резистной маски с изображением, обратным по отношению к рабочему рисунку, нанесение в высокотемпературных условиях на всю поверхность подложки и сформированной на ней резистной маски слоя активного материала с последующим удалением резистной маски с нанесенным на нее слоем активного материала, путем растворения полимерного фоторезиста, расположенного под слоем активного материала, причем растворение полимерного фоторезиста сопровождается его набуханием и образованием рабочего рисунка из оставшегося нанесенного на поверхность подложки слоя активного материала. Для обеспечения высокотемпературной формостойкости и термостойкости резистной маски в исходный полимерный фоторезист, изготовленный из фенолформальдегидной смолы и производного ортонафтохинондиазида, вводят добавку полигидроксилсодержащего соединения, выбранного из глицерина и полиэтиленгликоля с молекулярной массой от 380 до 650 единиц, в количестве 1-11% от массы производного ортонафтохинондиазида. Технический результат - повышение эффективности взрывной фотолитографии за счет повышения ее технологичности. 2 з.п. ф-лы, 10 табл., 2 пр.
Наверх