Патенты автора Шангереева Бийке Алиевна (RU)

Изобретение относится к технологии изготовления силовых кремниевых транзисторов и интегральных схем, в частности к способам защиты слоем стекла, с целью защиты поверхности кристаллов р-n-переходов от различных внешних воздействий. Сущность способа заключается в том, что на чистую полупроводниковую поверхность кристалла с р-n-переходом наносят слой защитного стекла, состоящий из смеси микропорошков со спиртом, в состав которого входят 55% окиси кремния SiO2; 13% окиси бора В2О3; 5,0 окиси лития Li2O3 и 3% окиси алюминия Al2O3. После термообработки в вакууме при температуре 230±10°С в течение 12±3 минут образуется стеклообразная пленка толщиной 0,9±1 мкм. После чего на поверхности кристаллов наращивается пленка SiO2 разложением этилокремниевой кислоты. Далее производится ее сплавление с нижним слоем стекла при температуре 700°С. Технический результат заключается в достижении стабильности и уменьшении температуры и длительности процесса.
Изобретение относится к микроэлектронике и может быть использовано в производстве полупроводниковых приборов и интегральных микросхем. Способ формирования пленки Ti-Ge на поверхности кремниевой пластины включает размещение кремниевой пластины в установке вакуумного напыления и напыления Ti-Ge в едином технологическом цикле, пленку напыляют толщиной 1,5±0,5 мкм и время напыления составляет 4±2 мин. Изобретение обеспечивает повышение надежности контакта кристалла с основанием корпуса и стабильность процесса присоединения, при использовании пленки при посадке кристалла на основание корпуса. 3 пр.
Изобретение относится к технологии изготовления кремниевых транзисторов, в частности к способам обработки обратной стороны перед напылением. Способ обработки поверхности пластин перед напылением титан-германий (Ti-Ge) включает обработку поверхности кремниевых пластин перед напылением на обратную сторону пластины, проводят обработку травлением, при этом в качестве травителя используют раствор, в состав которого входят: азотная кислота - HNO3, фтористоводородная кислота - HF, деионизованная вода - Н2О следующих соотношениях: HNO3:HF:H2O - 1:10:35, а время обработки поверхности кремниевых пластин при комнатной температуре не более 25±5 с. Изобретение обеспечивает полное удаление остатков окисла с поверхности обратной стороны кремниевых пластин перед напылением и уменьшение температуры обработки.
Изобретение относится к микроэлектронике и может быть использовано в производстве полупроводниковых приборов и интегральных микросхем. Целью изобретения является повышение надежности контакта кристалла с основанием корпуса и стабильности процесса присоединения. Сущность способа заключается в том, что на обратную сторону кремниевой пластины наносят последовательно в едином технологическом цикле титан-германий. Разделяют пластину на кристаллы и производят пайку кристаллов к основанию корпуса при температуре 290±20°С в течение 3±1 с. Технический результат заключается в повышении надежности контакта кристалла с основанием корпуса при проведении процесса напыления слоя титан-германий (Ti- Ge) в едином технологическом цикле.
Изобретение относится к технологии изготовления силовых кремниевых транзисторов и интегральных схем (ИС), в частности для формирования активной базовой области. Целью изобретения является равномерность разброса значений поверхностного сопротивления по всей поверхности кремниевой пластины, уменьшение температуры и длительности процесса. Поставленная цель достигается проведением процесса диффузии бора с применением жидкого источника - трехбромистый бор (BBr3) при следующем расходе газов: кислород O2=120 л/ч, азот N2=240 л/ч. Температура процесса 880°С, длительность процесса 14±2 минут. В газ-носитель добавляют кислород для окисления трехбромистого бора (BBr3) до окиси бора (B2O3) и для защиты поверхности от образования черных нерастворимых отложений. Сущность способа заключается в том, что на поверхности кремниевой пластины образуется боросиликатный слой при температуре 880°С за счет реакции: 4BBr3+3O2→2B2O3+6Br2. Контроль измерения поверхностного сопротивления (RS) осуществляется на установке "FPP-5000". При этом поверхностное сопротивление - RS=45±5 Ом/см.
Изобретение относится к технологии изготовления мощных транзисторных приборов, в частности к способам защиты поверхности полупроводниковой структуры от различных внешних воздействий. Сущность способа защиты структур на основе алюмосиликатного стекла заключается в том, что на чистую поверхность полупроводниковой структуры с p-n-переходом наносят слой на основе алюмосиликатного стекла, состоящего из смеси в состав которого входят: 45±5% окиси кремния -SiO2; 15±5% окиси алюминия -Al2O3; 30±5% окиси бария -ВаО и 0,09±0,01% оксида натрия -Na2O. Процесс проводят при рабочей температуре -750±50°С. Толщина стекла составляет 1,0±0,2 мкм. Алюмосиликатные стекла обладают высокими температурами размягчения, низкими диэлектрическими потерями и в некоторых случаях являются конкурентами керамике. Изобретение обеспечивает повышение стабильности приборов и уменьшение температуры и длительности процесса.
Изобретение относится к технологии изготовления полупроводниковых приборов, в частности к способам защиты поверхности кремниевой структуры от различных воздействий. Сущность способа защиты кремниевых структур на основе свинцово-силикатного стекла заключается в том, что на чистую поверхность кремниевой структуры наносят слой свинцово-силикатного стекла, состоящего из смеси, в состав которой входит: 50±5% окиси свинца - PbO; 30±5% окиси кремния - SiO2; 8±2% окиси алюминия - Al2O3 и 13±2% оксида лития - LiO. Процесс проводят при рабочей температуре - 700±50°С. Толщина слоя стекла составляет 0,8±0,2 мкм. Изобретение обеспечивает уменьшение температуры и длительности процесса.
Изобретение относится к солнечной энергетике. Способ формирования активной n- области солнечных элементов включает процесс образования фосфоросиликатного стекла на поверхности полупроводниковой пластины из газовой фазы, при этом в качестве источника диффузанта используется жидкий источник оксихлорид фосфора (POCl3) при следующем соотношении компонентов: азот N2=280 л/ч, кислород O2=300 л/ч, кислород O2=15 л/ч, азот через питатель N2=14 л/ч. Изобретение обеспечивает возможность проводить процесс диффузии фосфора при температуре 1000°C и получить RS=35±10 Ом/см с обеспечением уменьшения разброса значений поверхностной концентрации по полупроводниковой пластине, снижения длительности и температуры процесса. 3 пр.

Изобретение относится к технологии обработки поверхности полупроводниковых пластин, в частности к процессам очистки поверхности пластин между технологическими операциями, для изготовления солнечных элементов. Способ согласно изобретению заключается в том, что с поверхности пластин происходит полное удаление окисла в растворе состоящей из плавиковой кислоты и деионизованной воды, при комнатной температуре раствора. Процесс удаления окисла считается законченным, в том случае, когда раствор скатывается с поверхности обратной стороны кремниевой пластины. Реакция обработки поверхности кремниевой пластины протекает с большой скоростью, длительность процесса составляет не более 20 секунд. При этом не происходит ухудшения качества поверхности кремния. Предлагаемый способ обеспечивает удаление остатков окисла с поверхности обратной стороны перед напылением и способствует улучшению адгезии, благодаря которой увеличивается процент выхода годных кристаллов - 98%. 3 пр.
Изобретение относится к технологии изготовления солнечных элементов. Способ согласно изобретению заключается в том, что на поверхности подложки формируют тонкий слой пленки диоксида кремния за счет горения водорода и сухого кислорода в среде азота при расходе газов: N2=450 л/ч; H2=75 л/ч; O2=750±50 л/ч. Температура рабочей зоны 900±10°C. Разброс по толщине пленки диоксида кремния на подложке составил 3,0÷3,5%. Изобретение обеспечивает получение на поверхности подложки однородной и равномерной диэлектрической пленки диоксида кремния при низких температурах. 3 пр.
Изобретение относится к солнечной энергетике. Способ формирования активной p+-области солнечных элементов включает процесс диффузии бора с применением жидкого источника - треххлористого бора (BCl3). В качестве источника диффузанта используется жидкий источник - треххлористый бор (BCl3) при следующем расходе газов: кислород O2=12 л/ч, азот N2=380 л/ч, N2+H2=380 л/ч, BCl3=2 л/ч, 1000 ppm. Изобретение позволяет получить боросиликатный слой из жидкого источника треххлористого бора (BCl3) c обеспечением уменьшения разброса значений поверхностного сопротивления по кремниевой пластине, снижение температуры и длительности процесса. 3 пр.
Изобретение относится к технологии изготовления силовых кремниевых транзисторов, в частности к обработке поверхности эпитаксиальных кремниевых пластин от различных видов загрязнений для формирования активных областей. Изобретение обеспечивает полное удаление органических и механических загрязнений, а также примесей с поверхности эпитаксиальных кремниевых пластин и сокращение длительности процесса. В способе обработки поверхности эпитаксиальных кремниевых пластин пластины подвергают двухстадийной обработке в двух ваннах с различными растворами: в первой ванне содержится раствор смеси «КАРО», состоящий из серной кислоты и перекиси водорода (H2SO4:Н2О2) в соотношении 7,2:1,2 при температуре Т=105±5°C; во второй ванне содержится перекисно-аммиачный раствор (ПАР), состоящий из водного аммиака, перекиси водорода и деионизованной воды (NH4OH:Н2O2:H2O) в соотношении 1:4:22 при температуре Т=65°C, длительность обработки в каждой из ванн составляет 5 мин. Сущность способа заключается в том, что на поверхности эпитаксиальных кремниевых пластин происходит полное удаление органических, ионных, химических, газообразных и механических загрязнений, т.е. в первой ванне происходит удаление грубых жировых загрязнений, а во второй ванне снимаются оставшиеся нерастворенные загрязнения.
Использование: для изготовления полупроводниковых приборов и интегральных схем. Сущность изобретения заключается в том, что способ обработки обратной стороны кремниевых подложек на основе полировальной подушки включает обработку поверхности кремниевых подложек, поверхность подложки подвергается обработке полировальной подушкой, пропитанной суспензией, в два этапа: 1. Алмазная суспензия марки 3 до 13 класса чистоты поверхности, толщина удаляемого слоя 28±2 мкм, скорость удаления 0,8±0,1 мкм/мин; 2. Алмазная суспензия марки 1 до 14 класса чистоты поверхности, толщина удаляемого слоя 6±1 мкм, скорость удаления 1,0±0,1 мкм/мин, где глубина нарушенного слоя составляет 0,6 мкм. Технический результат: обеспечение чистой поверхности кремниевых подложек без сколов и царапин и повреждений обрабатываемой поверхности.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты поверхности кристаллов p-n переходов от различных внешних воздействий. Техническим результатом изобретения является достижение стабильности и снижение проникновения ионов натрия. В способе нанесения стекла для защиты поверхности кристаллов p-n переходов от различных внешних воздействий на чистую поверхность полупроводниковой подложки наносят слой боратного стекла, в состав которого входят следующие компоненты: 25% окиси кремния, 40% бората цинка, 20% окиси алюминия и 15% окиси цинка ZnO. При температуре процесса 700°C образуется пленка боратного стекла толщиной 1,2 мкм.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты поверхности p-n- переходов. Изобретение обеспечивает получение равномерной поверхности, уменьшение температуры и длительности процесса. В способе защиты поверхности p-n переходов на основе пятиокиси ванадия (V2O5) в виде порошкообразной пятиокиси ванадия (V2O5) создание защитной диэлектрической пленки на поверхности кремниевой подложки проводится в печи при температуре 1060°С при подаче водяных паров в кварцевую трубу, содержание кислорода с парциальным давлением 22 мм рт. ст. После окончания процесса кварцевую лодочку с порошком ванадия медленно выдвигают из печи. Контроль толщины защитной диэлектрической пленки осуществляется с помощью микроскопа МИИ-4. Толщина пленки δ=1,0±0,1 мкм.
Изобретение относится к технологии изготовления полупроводниковых приборов и кремниевых транзисторов, в частности к способам защиты поверхности кристаллов. Изобретение обеспечивает сокращение длительности процесса. В способе защиты поверхности р-n переходов процесс ведут в печи вакуумным катодным распылением при температуре в печи 1100°С и температуре кристалла 700°С. Источником служит окись титана в виде порошка, несущим агентом служит галоген НВr. Расстояние между источником окиси титана и кристаллом 10 см. Толщина формируемой пленки δ=1,1±0,1 мкм.
Изобретение относится к технологии изготовления полупроводниковых приборов и кремниевых транзисторов, в частности к способам защиты поверхности кристаллов. Изобретение обеспечивает получение равномерной поверхности, уменьшение температуры и длительности процесса. Защита поверхности полупроводниковых кристаллов осуществляется на основе пленки окиси алюминия вакуумным катодным распылением. Создание защитной пленки проводится в печи при температуре 1050°С, температура кристалла равна 850°С. Окись алюминия используют в виде порошка, в качестве несущего агента используют галоген НВr. Через рабочую камеру пропускают инертный газ и устанавливают перепад температур между источником окиси алюминия и полупроводниковым кристаллом. Расстояние между источником окиси алюминия и кристалла 15 см. Контроль толщины защитной пленки осуществляется с помощью микроскопа МИИ-4. Толщина пленки окиси алюминия δ=0,9±0,1 мкм.
Изобретение относится к технологии получения полупроводниковых приборов и интегральных схем, в частности к способам формирования диэлектрических пленок на основе окиси титана. Изобретение позволяет сформировать на поверхности подложки диэлектрическую пленку окиси титана при низких температурах. В способе формирования диэлектрической пленки для защиты поверхности р-n-переходов формирование диэлектрической пленки окиси титана осуществляется на поверхности подложек в печи вакуумным катодным распылением при температуре 800°С и температуре подложки 500°С. В качестве несущего агента служит галоген НВr. Расстояние между источником окиси титана и подложкой 9 см. Толщина формируемой диэлектрической пленки окиси титана 0,7±0,1 мкм.
Изобретение относится к технологии проведения диффузии галлия для формирования р-области при изготовлении полупроводниковых приборов. Изобретение обеспечивает уменьшение разброса значений поверхностной концентрации и получение равномерного легирования по всей поверхности подложек. В способе формирования р-области в качестве источника диффузанта используют окись галлия (Ga2O3) в виде порошка. Процесс проводят в два этапа: 1 - загонка галлия и 2 - разгонка галлия в одной трубе. Загонку и разгонку проводят при температуре процесса 1220°С, время загонки равно 30 минут, а время разгонки - 130 минут. Поверхностное сопротивление на этапе загонки 320±10 Ом/см, а на этапе разгонки 220±10 Ом/см.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к процессам обработки поверхности подложек для выявления дефектов линий скольжения. Изобретение позволяет получить однородную и ненарушенную поверхность подложек, снизить температуру и длительность процесса. Выявление линий скольжения проводится погружением подложек в травитель, состоящий из следующих компонентов: фтористоводородной кислоты, азотной кислоты и уксусной кислоты в объемных частях 3:6:3 при комнатной температуре, время травления - 90 секунд. В качестве оборудования используется металлографический микроскоп с увеличением от 40 до 200 крат. Количество дефектов линий скольжения составляет 25±5 шт./мм.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты поверхности p-n-переходов. Изобретение обеспечивает получение равномерной поверхности, уменьшение температуры и длительности процесса. В способе защиты p-n-переходов на основе окиси бериллия защита поверхности p-n-переходов осуществляется на основе пленки окиси бериллия вакуумным катодным распылением. Создание защитной пленки проводится в печи при температуре 1000°C, температура кристалла 600°С. Окись бериллия в виде порошка, а в качестве несущего агента используется галоген HBr. Устанавливается перепад температур между источником окиси бериллия и полупроводниковым кристаллом. Расстояние между источником окиси бериллия и кристаллом равно 12 см. Контроль толщины защитной пленки осуществляется с помощью микроскопа МИИ-4. Толщина пленки окиси бериллия δ=0,8±0,1 мкм.
Изобретение относится к технологии изготовления кремниевых мощных транзисторов, в частности может быть использовано для формирования активной ρ-области. Техническим результатом изобретения является уменьшение разброса значений поверхностных концентраций и получение равномерного легирования по длине лодочек. В способе диффузии бора процесс проводят с применением газообразного источника - диборана (В2Н6) при температуре 960°С и времени 35 минут на этапе загонки, при следующем соотношении компонентов: азот N2=240 л/ч, кислород O2=120 л/ч и водород Н2=7,5 л/ч, а на этапе разгонки при температуре 1100°С и времени разгонки - 2 часа. Поверхностное сопротивление равно Rs=155±5 Ом/см.
Использование: для получения мощных кремниевых транзисторов, в частности к способам получения фосфоро-силикатных стекол для формирования p-n переходов. Сущность изобретения заключается в том, что кремниевые пластины загружают в кварцевую лодочку, помещенную в кварцевую трубу, находящуюся внутри нагретой однозонной печи СДОМ-3/100. Через трубу пропускается поток газа носителя - водород (H2), а фосфорный ангидрид (P2O5) помещают в зону источника и нагревают до температуры 300°C, при которой происходит испарение источника. Процесс проводят при следующем расходе газов: О2=40 л/ч, азот N2=500 л/ч. Технический результат: обеспечение возможности осуществления процесса диффузии фосфора с применением твердого источника диффузанта - фосфорный ангидрид (P2O5) при температуре 1050°C и времени - 40 минут, и получить RS=140±10 Ом/см, при котором обеспечивается уменьшение разброса значений поверхностной концентрации по всей поверхности кремниевой пластины и снижение длительности и температуры процесса.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты кристаллов p-n-переходов. Техническим результатом изобретения является достижение стабильности и уменьшение температуры и длительности процесса. В способе защиты поверхности кристаллов p-n переходов на поверхность кристалла наносят слой защитного стекла, состоящего из смеси микропорошков со спиртом, в состав которого входят: 60% окиси кремния - SiO2 и 28% окиси бора - B2O3. После термообработки в вакууме при температуре 280±10°C в течение 18±2 минут образуется стеклообразная пленка толщиной 0,45±0,5 мкм. Далее производится ее сплавление с нижним слоем стекла при температуре 600°C.
Изобретение относится к технологии получения мощных кремниевых транзисторов, в частности к способам получения фосфоросиликатного стекла для формирования p-n-переходов. Изобретение обеспечивает получение равномерного значения поверхностной концентрации по всей поверхности кремниевой пластины и уменьшение длительности процесса. Способ диффузии фосфора включает образование фосфоросиликатного стекла на поверхности кремниевой пластины. В качестве источника диффузанта используют нитрид фосфора. Процесс проводят при расходе газов: O2=70 л/ч, азот N2=700 л/ч, при температуре 1020°C и времени проведения процесса 30 минут. Контроль процесса проводят путем измерения поверхностного сопротивления (RS). Поверхностное сопротивление равно RS=155±5 Ом/см.
Использование: для изготовления полупроводниковых приборов и интегральных схем (ИС). Сущность изобретения заключается в том, что химическое травление поверхности полупроводников проводят в травителе, состоящем из следующих компонентов: фтористоводородной (HF), азотной (HNO3) и уксусной (CH3COOH) кислот в соотношении 1:6:3. Технический результат: полное удаление образовавшегося оксида на поверхности полупроводников и сокращение времени обработки.
Изобретение относится к технологии изготовления мощных кремниевых транзисторов, в частности к способам получения диэлектрических пленок нитрида кремния
Изобретение относится к технологии изготовления мощных транзисторов, в частности к методам получения защитных пленок для формирования активных областей p-n переходов
Изобретение относится к технологии изготовления силовых кремниевых транзисторов и интегральных схем, в частности к способам обработки подложек для формирования контактных окон
Изобретение относится к технологии получения защитных пленок полупроводниковых приборов и интегральных схем

Изобретение относится к технологии изготовления полупроводниковых приборов
Изобретение относится к процессам обработки поверхности кремниевых пластин для выявления эпитаксиальных дефектов дислокаций
Изобретение относится к способам обработки оснастки, применяемой для проведения окислительных и диффузионных процессов полупроводникового производства
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения пленок, содержащих бор на поверхности полупроводниковых материалов
Изобретение относится к технологии изготовления силовых кремниевых транзисторов, в частности к способам обработки карбид-кремниевой трубы, применяемой для проведения высокотемпературных процессов в диффузионных печах

Изобретение относится к технологии изготовления силовых кремниевых транзисторов, в частности к способам обработки кристаллов кремния
Изобретение относится к технологии изготовления силовых кремниевых транзисторов и полупроводниковых приборов, в частности к способам обработки карбид-кремниевой трубы, применяемой для проведения высокотемпературных процессов в диффузионных печах
Изобретение относится к микроэлектронике и может быть использовано в производстве полупроводниковых приборов и интегральных схем
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения пленочных диэлектриков, для маскирования поверхности кремниевых пластин при проведении диффузионных процессов
Изобретение относится к технологии получения полупроводниковых приборов и интегральных схем (ИС), в частности к способам диффузии фосфора
Изобретение относится к технологии получения полупроводниковых приборов и интегральных схем, в частности к способам нанесения фоторезиста на кремниевую подложку для проведения технологических процессов фотолитографии
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты слоем стекла поверхности кристаллов р-n-переходов от различных внешних воздействий
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам обработки фторопластовых изделий после технологических операций
Изобретение относится к технологии изготовления полупроводниковых приборов, в частности к полной активации доноров и акцепторов при условии полного устранения остаточных дефектов
Изобретение относится к технологии изготовления полупроводниковых приборов, в частности к способам подготовки поверхности полупроводниковых подложек к операциям фотолитографии
Изобретение относится к технологии изготовления полупроводниковых приборов, к способам обработки кварцевой оснастки, в частности кварцевой трубы, применяемой при проведении высокотемпературных процессов в диффузионных печах
Изобретение относится к технологии изготовления полупроводниковых приборов
Изобретение относится к технологии получения силовых кремниевых транзисторов, в частности для формирования активной базовой области
Изобретение относится к микроэлектронике и может быть использовано в производстве полупроводниковых приборов и интегральных схем
Изобретение относится к технологии изготовления полупроводниковых приборов и ИС, в частности к способам травления пленочных диэлектриков, из которых наиболее широко используемым является нитрид кремния

 


Наверх