Способ производства арматурного профиля из кремнемарганцовистой стали

Изобретение относится к области металлургии, конкретно к прокатному производству, и предназначено для получения на сортовых станах стального арматурного профиля из непрерывнолитых заготовок. Техническим результатом изобретения является повышение качества и выхода годных арматурных профилей. Для достижения технического результата осуществляют нагрев заготовок, многопроходную прокатку в валках с калибрами, прерванную закалку движущихся полос водой и последующий самоотпуск, при этом заготовки нагревают до 1150-1280°С, температуру конца прокатки поддерживают в интервале 900-1050°С, а закалку прерывают при температуре 580-700°С. Кроме того, прокатку в последнем проходе производят с коэффициентом вытяжки 1,05-1,30, закалку начинают через 1-5 с после выхода полосы из валков, а сталь имеет следующий химический состав, мас.%: 0,20-0,40 С; 0,30-0,90 Si; 0,80-1,50 Mn; остальное - Fe и примеси. 2 табл.

 

Изобретение относится к области металлургии, конкретно к прокатному производству, и предназначено для получения на сортовых станах стального арматурного термоупрочненного проката из непрерывнолитых заготовок.

Известен способ производства стального арматурного профиля, включающий нагрев заготовок из углеродистой стали марки Ст3, многопроходную прокатку в валках с калибрами, охлаждение движущихся полос водой вначале на 35-40°С непосредственно на выходе из валков чистовой клети, затем их ускоренное охлаждение водой до температуры 600-650°С и окончательное охлаждение на воздухе [1].

Недостатки известного способа состоят в том, что арматурные профили имеют низкие прочностные и вязкостные свойства. Это снижает их качество и выход годного.

Известен также способ производства стального арматурного профиля из углеродистой стали марки Ст3сп, включающий нагрев заготовки, многопроходную прокатку с коэффициентом вытяжки в последнем проходе µ=1,20, термоупрочнение путем ускоренного охлаждения движущихся полос водой в сочетании с самоотпуском на воздухе [2].

Указанный способ также не обеспечивает высоких прочностных и вязкостных свойств арматурных профилей, что снижает их качество и выход годного.

Наиболее близким аналогом к предлагаемому изобретению является способ производства круглого сортового проката из заэвтектоидной кремниймарганцовистой стали следующего химического состава, мас.%:

Углерод 0,6-1,0
Кремний Не более 1,0
Марганец Не более 1,5

Способ включает нагрев заготовок, многопроходную прокатку на 10-клетевом стане 300-3 в валках с калибрами, прерванную закалку движущихся полос непосредственно на выходе из валков чистовой клети охлаждением водой вначале до температуры 770-850°С, затем до температуры 750°С и последующий самоотпуск при охлаждении на воздухе за два этапа, причем время охлаждения регламентируют в зависимости от содержания в стали легирующих элементов [3].

Недостатки указанного способа состоят в том, что полученные при его использовании арматурные профили имеют низкие качество и выход годного вследствие неудовлетворительных пластических и вязкостных свойств.

Техническая задача, решаемая изобретением, состоит в повышении качества и выхода годных арматурных профилей.

Для решения поставленной технической задачи в известном способе производства арматурного профиля из кремниймарганцовистой стали, включающем нагрев заготовок, многопроходную прокатку в валках с калибрами, прерванную закалку движущихся полос водой и последующий самоотпуск, согласно предложению нагрев заготовок ведут до температуры 1150-1280°С, температуру конца прокатки поддерживают в интервале 900-1050°С, и закалку прерывают при температуре 580-700°С. Кроме того, прокатку в последнем проходе производят с коэффициентом вытяжки 1,05-1,30, а закалку начинают через 1-5 с после выхода полосы из валков. При этом кремнемарганцовистая сталь имеет следующий химический состав, мас.%:

Углерод 0,20-0,40
Кремний 0,30-0,90
Марганец 0,80-1,50
Железо и примеси Остальное

Сущность предлагаемого технического решения состоит в следующем. Термоупрочненная арматура должна сочетать высокие прочностные, пластические и вязкостные свойства. Это важно для того, чтобы в случае деформации железобетонная конструкция не разрушалась на отдельные фрагменты с хрупким изломом армирующих элементов, а сохраняла монолитность за счет их пластического изгиба. Требуемое сочетание механических свойств арматурных профилей достигается одновременной оптимизацией химического состава стали и режимов ее деформационно-термической обработки в процессах нагрева, прокатки, прерванной закалки и самоотпуска.

Кремниймарганцовистая арматурная сталь предложенного состава обладает повышенной прокаливаемостью, благодаря чему в термоупрочненном состоянии после прокатки и термической обработки по заявленным режимам арматурные профили диаметром 6,0-40,0 мм имеют по сечению три слоя. Поверхностный слой состоит из отпущенного мартенсита с сохранением ориентации карбидных частиц по бывшим пластинам мартенсита закалки. Промежуточный слой характеризуется смесью нижнего бейнита и отпущенного мартенсита. Центральная часть состоит в основном из троостита, верхнего бейнита и выделений избыточного феррита. Такой условно композиционный металлический материал сочетает за счет менее упрочненной сердцевины высокую общую пластичность и вязкость, а за счет промежуточного и поверхностного слоев - высокую общую прочность. В результате арматурные профили всего размерного сортамента имеют более высокое и равномерное качество, что в свою очередь способствует увеличению выхода годного.

Предпрокатный нагрев непрерывнолитых заготовок до температуры Та=1150-1280°С обеспечивает аустенитизацию литой структуры, полное растворение грубых карбидных включений, повышает гомогенность химического состава стали. Прокатка в завершающем проходе с температурой конца прокатки Ткп=900-1050°С и коэффициентом вытяжки µ=1,05-1,30 обеспечивает формирование точной геометрии поперечного профиля с диспергированной аустенитной микроструктурой. Однако микроструктура и текстура деформации приобретают неравномерность по сечению полосы из-за наличия на поверхности арматуры профиля выступов винтовой формы. Последеформационная пауза продолжительностью τ=1-5 с до начала прерванной закалки способствует рекристаллизации деформированного аустенита. Поскольку интенсивность протекания рекристаллизации выше в местах повышенной локальной деформации, по истечении последеформационной паузы неравномерность микроструктуры и текстуры по сечению арматурных профилей перед закалкой исчезает.

Последующая прерванная закалка движущихся полос водой от температуры Ткп=900-1050°С до температуры Тп=580-700°С обеспечивает, во-первых, необходимую степень упрочнения арматурного профиля и, во-вторых, полное протекание процесса самоотпуска при последующем охлаждении на воздухе и снятие термических и фазовых напряжений закалки.

Экспериментально установлено, что при нагреве непрерывнолитых заготовок до температуры Та выше 1280°С не исключается пережог и окисление границ зерен литой структуры, увеличивается окалинообразование и снижается выход годного. При температуре Та ниже 1150°С снижается гомогенность химического состава стали, возрастает неравномерность температуры по длине прокатываемых полос, в особенности малых сечений. Это снижает качество продукции и выход годного.

При температуре Ткп выше 1050°С или продолжительности паузы τ более 5 с в деформированном аустените полосы стартует процесс собирательной рекристаллизации, что ведет к неравномерному росту аустенитных зерен микроструктуры, снижению качества продукции и выхода годного. При температуре

Ткп ниже 900°С или τ менее 1 с в стали сохраняются неравномерность микроструктуры и текстуры, обусловленные неравномерным деформированием арматурной полосы с винтовыми выступами по ее сечению. Это также снижает качество продукции и выход годного.

При коэффициенте вытяжки µ в последнем проходе менее 1,05 не исключается образование дефекта «невыполнение профиля», высота винтовых выступов на поверхности полосы менее допустимой. Это ведет к увеличению количества некондиционной продукции. Увеличение µ более 1,30 приводит к переполнению арматурного калибра, искажению формы винтовых выступов, снижению качества и выхода годного.

При температуре прерывания закалки Тп ниже 580°С арматурные профили имеют низкие вязкостные и пластические свойства (особенно в малых сечениях), что ухудшает их качество. Увеличение Тп более 700°С приводит к разупрочнению готового арматурного профиля, что недопустимо.

Углерод в кремниймарганцовистой стали является основным упрочняющим элементом, поэтому при его концентрации менее 0,20% прочностные свойства снижаются, что ухудшает качество арматурных профилей. В то же время увеличение концентрации углерода более 0,40% приводит к потере вязкостных и пластических свойств, повышает хрупкость термоупрочненных арматурных профилей, что недопустимо.

Кремний является активным раскислителем, повышает стойкость мартенсита против отпуска, оказывает благоприятное влияние на субструктуру мартенсита. Однако увеличение содержания кремния более 0,90% приводит к увеличению количества неметаллических включений в микроструктуре, снижению пластических и вязкостных свойств термоупрочненных арматурных профилей. Снижение содержания кремния менее 0,30% приводит к потере прочностных свойств. Все это снижает качество и выход годных арматурных профилей.

Марганец повышает прокаливаемость стали за счет уменьшения скорости превращения аустенита при охлаждении. При его содержании 0,80-1,5% он упрочняет сталь, не снижая вязкостных и пластических свойств. Увеличение содержания марганца сверх 1,5% ведет к потере пластичности стали в термоупрочненном состоянии. Снижение содержания марганца менее 0,80% вызывает снижение прочностных и пластических свойств стали. И в том, и в другом случае имеет место снижение качества и выхода годных арматурных профилей.

Пример реализации способа

Выплавку сталей различного химического состава (табл.1) производят в электродуговой печи. Для раскисления и легирования сталей в расплав вводят ферросилиций и ферромарганец.

Таблица 1
Химический состав кремниймарганцовистых сталей
№ состава Содержание химических элементов, мас.%
С Si Mn Fe + примеси
1. 0,10 0,20 0,79 Остальное
2. 0,20 0,30 0,80 -:-
3. 0,30 0,60 1,15 -:-
4. 0,40 0,90 1,50 -:-
5. 0,50 0,92 1,60 -:-
6. (прототип) 0,80 0,95 1,40 -:-

Выплавленную сталь подвергают непрерывной разливке в заготовки квадратного сечения 150×150 мм.

Непрерывнолитые заготовки из кремниймарганцовистой стали с составом №3 нагревают в методической печи сортопрокатного стана 350 до температуры аустенитизации Та=1215°С и осуществляют многопроходную горячую прокатку арматурных профилей диаметром 28 мм в валках с калибрами. Прокатку в последнем проходе на стане 350 осуществляют с коэффициентом вытяжки µ=1,18 при температуре Ткп=975°С в круглом калибре с винтовыми канавками для формирования периодического арматурного профиля.

Выходящие из последней клети со скоростью V=10 м/с арматурные профили подвергают прерванной закалке водой в процессе транспортирования по секционированному участку ускоренного охлаждения, отстоящего от последней клети стана 350 на расстоянии L=30 м. При этом продолжительность последеформационной паузы τ составляет:

.

Закалку арматурных профилей водой прерывают при температуре Тп=640°С. Дальнейшее охлаждение арматурных профилей осуществляют на воздухе. В процессе охлаждения на воздухе происходит самоотпуск арматурных профилей. Готовые арматурные профили имеют высокое качество по комплексу механических свойств, точности геометрических размеров и высокий выход годного Q=99,2%.

Варианты реализации способа и показатели их эффективности приведены в таблице 2.

Данные, представленные в таблице 2, свидетельствуют о том, что при реализации предложенного способа (варианты №2-4) достигается наиболее высокое качество арматурных профилей при одновременном повышении выхода годного. В случаях запредельных значений заявленных параметров (варианты №1 и №5), а также способа-прототипа (вариант №6) качество и выход годных профилей снижаются.

Технико-экономические преимущества предложенного способа состоят в том, что одновременная оптимизация химического состава стали и параметров деформационно-термической обработки обеспечивают повышение комплекса механических свойств, точное выполнение формы поперечного сечения арматурного профиля. В результате повышаются качество и выход годных арматурных профилей.

Использование предложенного способа обеспечит повышение уровня рентабельности производства арматурных профилей на 5-10%.

Литература

1. Патент Российской Федерации RU 2197340, МПК В21В 1/1 6, 2003 г.

2. Патент Российской Федерации RU 2254179, МПК В21В 1/16, 2005 г.

3. Патент Российской Федерации RU 2212458, МПК C21D 8/06, C21D 1/02, 2003 г. - прототип.

Таблица 2
Режимы производства термоупрочненных арматурных профилей и их эффективность
№ варианта № состава Та, °C Ткп, °С µ τ, с Тп Показатели качества Q, %
σв, МПа δ5, % KCU-60, МДж/м2 Холодный загиб, град
1. 1. 1290 1060 1,40 6,0 710 420 17 0,3 80 86,5
2. 4. 1280 1050 1,30 1,0 700 600 25 0,5 180 99,1
3. 3. 1215 975 1,18 3,0 640 610 25 0,6 180 99,2
4. 2. 1150 900 1,05 5,0 580 600 25 0,6 180 99,1
5. 5. 1140 890 1,04 0,9 570 590 14 0,3 45 85,3
6.
(прототип)
6. 1200 не регл. не регл. 800 700 10 0,2 45 87,7

1. Способ производства арматурного профиля из кремнемарганцовистой стали, включающий нагрев заготовок, многопроходную прокатку в валках с калибрами, закалку движущейся полосы арматурного профиля водой с прерыванием и последующим самоотпуском, отличающийся тем, что нагрев заготовок ведут до температуры 1150-1280°С, температуру конца прокатки поддерживают в интервале 900-1050°С, а закалку арматурного профиля прерывают при температуре 580-700°С.

2. Способ по п.1, отличающийся тем, что прокатку в последнем проходе производят с коэффициентом вытяжки 1,05-1,30, а закалку начинают через 1-5 с после выхода арматурного профиля из валков.

3. Способ по п.1, отличающийся тем, что арматурный профиль производят из стали, содержащей следующий химический состав, мас.%:

углерод 0,20-0,40
кремний 0,30-0,90
марганец 0,80-1,50
железо и примеси остальное



 

Похожие патенты:
Изобретение относится к области металлургии, конкретно к прокатке периодических круглых профилей, и может быть использовано при производстве арматурного профиля А500С.
Изобретение относится к черной металлургии, в частности к изготовлению термоупрочненной стержневой арматурной стали в крупных профилях с использованием тепла прокатного нагрева из непрерывно-литой низколегированной стали при термическом упрочнении проката в потоке среднесортных станов.
Изобретение относится к области черной металлургии, а именно к способам производства арматурного периодического профиля. .
Изобретение относится к области черной металлургии, а именно к способам производства катанки для получения холоднодеформированной арматуры. .

Изобретение относится к области термической обработки горячекатаного проката. .
Изобретение относится к области производства горячекатаного проката, преимущественно арматурной стали, и его термического упрочнения. .
Изобретение относится к черной металлургии, в частности к изготовлению термоупрочненной арматурной стали с использованием тепла прокатного нагрева, и может быть использовано при производстве высокопрочной стержневой арматуры периодического профиля средних диаметров.

Изобретение относится к черной металлургии, а именно к термическому упрочнению арматуры из углеродистой и низколегированной стали, преимущественно для железобетонных шпал.

Изобретение относится к черной металлургии, в частности к термической обработке арматурной стали с использованием тепла прокатного нагрева, и может быть использовано при производстве высокопрочной стержневой арматуры.

Изобретение относится к металлургии, в частности к производству арматурной стали с использованием холодной деформации для нанесения периодического профиля. .
Изобретение относится к области металлургии, конкретно к прокатному производству, и предназначено для получения на сортовых станах стальных свариваемых арматурных профилей из непрерывнолитых заготовок

Изобретение относится к черной металлургии, а именно к сталеплавильному, прокатному и метизному переделу, и может быть использовано при производстве арматурного проката периодического профиля класса В500С диаметром от 4,0 до 12,0 мм
Изобретение относится к области черной металлургии, а именно к изготовлению стальных высокопрочных протяженных изделий, используемых при изготовлении сейсмостойких железобетонных конструкций
Изобретение относится к области металлургии, в частности к производству горячекатаной гладкой круглой катанки из низкоуглеродистой стали на непрерывных проволочных станах

Изобретение относится к металлургии стали и может быть использовано при производстве подката для получения холоднодеформированного арматурного периодического профиля
Изобретение относится к области черной металлургии, в частности к изготовлению стержневой арматуры большого диаметра среднего класса прочности из низколегированной стали с использованием тепла прокатного нагрева в потоке непрерывных среднесортных станов

Изобретение относится к области упрочнения, в частности, арматурных стержней, используемых для изготовления железобетонных элементов в виде панелей, блоков, тротуарной плитки, фибробетона

Изобретение относится к строительным железобетонным конструкциям и их армированию

Изобретение относится к металлургии, в частности к производству стальной высокопрочной арматуры
Наверх