Торовый нагреватель жидкости

Изобретение относится к теплотехнике, а именно к устройствам, где кинетическая энергия потока жидкости преобразуется в тепловую энергию, и может быть использовано для отопления и горячего водоснабжения промышленных и бытовых объектов. Торовый нагреватель жидкости состоит из камеры нагрева в форме тора, которая образована изогнутыми с одинаковым радиусом сегментами труб (отводами), сплошной перегородки, разделяющей камеру нагрева и расположенной под углом к образующей поверхности трубопровода, входного сопла, размещенного в непосредственной близости от перегородки по касательной к внутренней поверхности камеры нагрева и с наклоном против направления движения жидкости. С другой стороны перегородки расположена трубопроводная перемычка, соединяющая противолежащие области камеры нагрева, в которой выполнен выходной патрубок. Внутри камеры нагрева равномерно установлены не менее трех перпендикулярных к образующей поверхности трубопровода гидроимпульсных перегородок, имеющих расположенное по центру сквозное отверстие. Такое выполнение теплогенератора повысит эффективность нагрева жидкости. 1 ил.

 

Изобретение относится к теплотехнике, а именно к устройствам, где кинетическая энергия потока жидкости преобразуется в тепловую энергию, и может быть использовано для отопления и горячего водоснабжения промышленных и бытовых объектов.

Известен теплогенератор струйного действия "Тор" (см. патент RU №2096694 С1, опубл. 20.11.1997 г.), принятый за прототип. Теплогенератор "Тор" содержит входное сопло и выходной патрубок, камеру нагрева в форме тора, образованного входной и выходной чашами, сообщенными соответственно с входным соплом и выходным патрубком, цилиндрическую камеру смешения. Причем теплогенератор снабжен дополнительным конусом сопротивления, установленным в выходной чаше, а также острой кромкой для разделения потока жидкости, образованной конусом дополнительного сопротивления и полуторовой полостью выходной чаши.

Недостатком прототипа является недостаточная теплопроизводительность из-за низких динамических параметров нагреваемой жидкости, низкой степени кавитационных процессов и отсутствия дополнительных воздействий на жидкость.

Предлагаемым изобретением решается задача: сокращение энергозатрат за счет повышения эффективности устройства.

Технический результат, получаемый при осуществлении изобретения, заключается в повышении теплопроизводительности за счет формирования комплексного воздействия на жидкость с целью ее нагрева.

Указанный технический результат достигается тем, что в предлагаемом торовом нагревателе жидкости, состоящем из входного сопла и выходного патрубка, камеры нагрева в форме тора, новым является то, что камера нагрева в форме тора образована изогнутыми с одинаковым радиусом сегментами труб, камера нагрева разделена сплошной перегородкой, расположенной под углом к образующей поверхности тора, входное сопло размещено в непосредственной близости от перегородки по касательной к внутренней поверхности камеры нагрева и с наклоном против направления движения жидкости, а с другой стороны перегородки расположена трубопроводная перемычка, соединяющая противолежащие области камеры нагрева, в которой выполнен выходной патрубок, внутри камеры нагрева равномерно установлены не менее трех перпендикулярных к образующей поверхности тора гидроимпульсных перегородок, имеющих расположенное по центру сквозное отверстие.

Выполнение камеры нагрева в форме тора, образованного изогнутыми с одинаковым радиусом сегментами труб и разделенной сплошной перегородкой, расположенной под углом к образующей поверхности тора, позволяет:

- во-первых, придать потоку жидкости круговой характер движения при перемещении от входного сопла к сплошной перегородке;

- во-вторых, использовать для нагрева жидкости действие центробежной силы, за счет которой происходит повышение давления в жидкости в периферийном слое, движущемся вдоль наружной стенки камеры нагрева, образующей торовую поверхность;

- в-третьих, снизить трудоемкость изготовления камеры нагрева за счет применения стандартных труб (отводов);

- в-четвертых, за счет разделения трубопровода перегородкой, расположенной под углом к образующей поверхности трубопровода, разделить зоны подвода и отвода жидкости;

- в-пятых, за счет расположения сплошной перегородки под углом к образующей поверхности тора придать потоку жидкости направление движения в трубопроводную перемычку;

- в-шестых, использовать разделительную перегородку в качестве тормозного устройства, при взаимодействии жидкости с которым происходит ее нагрев за счет торможения и турбулизации потока, в котором возникают множественные кавитационные полости.

Размещение входного сопла в непосредственной близости от сплошной перегородки по касательной к внутренней поверхности камеры нагрева и с наклоном против направления движения жидкости позволяет:

- во-первых, осуществить с ускорением ввод жидкости во внутреннюю полость камеры нагрева;

- во-вторых, придать жидкости поступательно-вращательнный характер движения в камере нагрева;

- в-третьих, получить за счет вращательного характера движения жидкости два взаимодействующих между собой слоя жидкости: периферийный слой, движущийся вдоль стенок камеры смешения и наиболее подверженный нагреву, и более холодный центральный слой;

- в-четвертых, наложить на вращательно-поступательный поток жидкости воздействие центробежных сил, возникающих при круговом движении жидкости в камере нагрева.

Размещение с другой стороны перегородки трубопроводной перемычки, соединяющей противолежащие области трубопровода, в которой выполнен выходной патрубок, позволяет:

- во-первых, организовать дополнительный контур для перемещения жидкости в нагревателе;

- во-вторых, осуществить дополнительное торможение жидкости при резком изменении направления ее движения;

- в-третьих, произвести отвод части нагретой жидкости к системе теплопотребления после ее торможения и конденсации кавитационных полостей.

Установка внутри камеры нагрева равномерно расположенных не менее трех перпендикулярных к образующей поверхности тора гидроимпульсных перегородок, имеющих расположенное по центру сквозное отверстие, позволяет:

- во-первых, осуществить дросселирование вращательно-поступательно движущегося потока жидкости с выделением тепловой энергии;

- во-вторых, активизировать кавитационные процессы в жидкости;

- в-третьих, получить на выходе из сквозного отверстия перегородки пульсирующий процесс изменения давления и наложение его на общий поток жидкости, что приводит к дополнительному нагреву жидкости;

- в-четвертых, поддерживать динамические характеристики потока жидкости на высоком уровне вплоть до взаимодействия ее с разделительной перегородкой и отводом в трубопроводную перемычку;

- в-пятых, осуществлять регулирование потребляемой мощности и, соответственно, теплопроизводительности за счет изменения количества гидроимпульсных перегородок и/или диаметра сквозных отверстий.

Технические решения с признаками, отличающими заявляемое решение от прототипа, не известны и явным образом из уровня техники не следуют. Это позволяет считать, что заявляемое решение является новым и обладает изобретательским уровнем.

Сущность изобретения поясняется чертежом, где показана общая схема торового нагревателя жидкости.

Торовый нагреватель жидкости состоит из камеры нагрева 1 в форме тора, которая образована изогнутыми с одинаковым радиусом сегментами труб (отводами), сплошной перегородки 2, разделяющей камеру нагрева 1 и расположенной под углом к образующей поверхности трубопровода, входного сопла 3, размещенного в непосредственной близости от перегородки 2 по касательной к внутренней поверхности камеры нагрева 1 и с наклоном против направления движения жидкости. С другой стороны перегородки 2 расположена трубопроводная перемычка 4, соединяющая противолежащие области камеры нагрева 1, в которой выполнен выходной патрубок 5. Внутри камеры нагрева равномерно установлены не менее трех перпендикулярных к образующей поверхности трубопровода гидроимпульсных перегородок 6, имеющих расположенное по центру сквозное отверстие 7.

Торовый нагреватель жидкости работает следующим образом. Жидкость под давлением подается через входное сопло 3 внутрь камеры нагрева 1 и приобретает форму спиралеобразного потока, нагревающегося за счет трения о стенки трубопровода, а также за счет межслойного взаимодействия в жидкости. Наиболее интенсивно процесс нагрева происходит за счет действия центробежной силы при круговом движении жидкости в области внешнего участка стенки камеры нагрева 1. При движении в камере нагрева 1 жидкость проходит через гидроимпульсные перегородки 6 со сквозным отверстием 7. В отверстии 7 жидкость ускоряется, а после перегородки 6 происходит резкое снижение ее скорости и пульсирующее повышение давления, происходящее на фоне активизации процесса кавитации. Пульсации давления в жидкости, многочисленные кавитадионные полости способствуют повышению температуры жидкости. При достижении жидкостью сплошной разделительной перегородки 2 происходит торможение потока, продолжающееся при поступлении ее в трубопроводную перемычку 4 за счет резкого изменения направления движения жидкости. Далее часть жидкости отводится к системе теплопотребления через выходной патрубок 5, а оставшаяся часть поступает в камеру нагрева 1 для дальнейшей циркуляции.

Торовый нагреватель жидкости, состоящий из входного сопла и выходного патрубка, камеры нагрева в форме тора, отличающийся тем, что камера нагрева в форме тора образована изогнутыми с одинаковым радиусом сегментами труб, разделенными сплошной перегородкой, расположенной под углом к образующей поверхности тора, входное сопло размещено в непосредственной близости от перегородки по касательной к внутренней поверхности камеры нагрева и с наклоном против направления движения жидкости, с другой стороны перегородки расположена трубопроводная перемычка, соединяющая противолежащие области камеры нагрева, в которой выполнен выходной патрубок, внутри камеры нагрева равномерно установлены не менее трех перпендикулярных к образующей поверхности тора гидроимпульсных перегородок, имеющих расположенное по центру сквозное отверстие.



 

Похожие патенты:
Изобретение относится к средствам преобразования кинетической энергии потока теплоносителя в тепловую энергию и может быть использовано в качестве альтернативы нагревателям.

Изобретение относится к теплотехнике и может использоваться для нагрева жидкости для отопления и горячего водоснабжения стационарных и временно развернутых помещений.

Изобретение относится к теплотехнике и может быть использовано для нагрева воды для производственных и бытовых нужд. .

Изобретение относится к энергетике и может быть использовано для получения тепла. .

Изобретение относится к теплоэнергетике. .

Изобретение относится к теплообменным устройствам, применяемым для передачи тепла или холода в процессах, использующих потоки жидкости или газа, и может быть использовано в системах отопления, вентиляции, в химической, пищевой и других отраслях промышленности.

Изобретение относится к ветротеплоэнергетике и может быть использовано в системах отопления и горячего водоснабжения жилых и производственных зданий. .

Изобретение относится к устройствам для получения тепловой энергии и может использоваться в различных тепловых системах объектов промышленного и бытового назначения.

Изобретение относится к энергетике и может быть использовано в замкнутых автономных системах отопления, вентиляции и горячего водоснабжения. .

Изобретение относится к конструкциям роторных кавитационных реакторов, которые могут быть использованы в автономных замкнутых системах для теплоснабжения жилых, общественных и промышленных зданий, а также для обеззараживания, гомогенизации и нагрева жидкостей в технологических системах.

Изобретение относится к энергетике и может быть использовано для нагрева жидкости в системах отопления и горячего водоснабжения

Изобретение относится к оборудованию для переработки, модификации, структуризации, тепловыделения, очистки различных жидкостей, а также для улучшения химических процессов в водных растворах

Изобретение относится к энергетике и может быть использовано при нагреве воды для горячего водоснабжения

Изобретение относится к области теплотехники и может быть использовано для теплоснабжения на основе геотермальных источников

Изобретение относится к физико-химическим технологиям получения тепла, которое генерируется иначе, чем в процессах горения, и может быть использовано в промышленности, а также при создании бытовых нагревателей

Изобретение относится к теплотехнике, в частности к устройствам для нагрева жидкости, и может быть использовано в системе отопления, для производственных и бытовых нужд, для подогрева непосредственно в трубопроводе вязких жидкостей

Изобретение относится к способу получения механическим устройством горячей воды и парогазовой смеси и может быть использовано автономно в жилищно-коммунальном и промышленном хозяйстве для подачи горячей воды, и других областях промышленности

Изобретение относится к ветроэнергетике, а именно к ветротеплоэлектрическим генераторам, использующим энергию ветра для нагрева воды и получения электрической энергии

Изобретение относится к теплотехнике и может быть использовано для нагрева технологических жидкостей, а также питьевой и технологической воды
Наверх