Автоматическая комбинированная микропроцессорная система регулирования температуры топлива тепловой машины



Автоматическая комбинированная микропроцессорная система регулирования температуры топлива тепловой машины
Автоматическая комбинированная микропроцессорная система регулирования температуры топлива тепловой машины
Автоматическая комбинированная микропроцессорная система регулирования температуры топлива тепловой машины

Владельцы патента RU 2397348:

Государственное образовательное учреждение высшего профессионального образования "Российский государственный открытый технический университет путей сообщения" (РГОТУПС) (RU)

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания, и может быть использовано при эксплуатации дизелей, работающих на вязком или маловязком видах топлива. Изобретение позволяет повысить топливную экономичность тепловой машины за счет обеспечения оптимальных значений температуры топлива перед топливным насосом высокого давления в зависимости от режима работы машины и независимо от условий ее работы. Автоматическая комбинированная микропроцессорная система регулирования температуры топлива тепловой машины, содержащая топливный бак, топливоподкачивающий насос, предохранительный клапан, управляющий орган тепловой машины, подпорный клапан, дополнительно содержит: первое измерительное устройство, предназначенное для измерения температуры топлива на входе в топливные насосы высокого давления тепловой машины; второе измерительное устройство, предназначенное для измерения мощности тепловой машины; третье измерительное устройство, предназначенное для измерения температуры топлива забираемого топливоподкачивающим насосом из топливного бака; газовый топливоподогреватель, предназначенный для подогрева топлива отработавшими газами тепловой машины; трехходовой перепускной клапан с приводом, установленный в газовых перепускных трубопроводах между газовым топливоподогревателем и выхлопным коллектором тепловой машины, предназначенным для отвода отработавших газов; первое, второе и третье задающие устройства; первое, второе и третье сравнивающие устройства. Третье сравнивающее устройство связано с третьим измерительным устройством и третьим задающим устройством, второе сравнивающее устройство связано со вторым измерительным устройством и вторым задающим устройством, а первое сравнивающее устройство связано с первым измерительным устройством, первым задающим устройством, вторым и третьим сравнивающими устройствами, а также приводом трехходового перепускного клапана. Первое измерительное устройство, первое задающее устройство, первое сравнивающее устройство, трехходовой перепускной клапан с приводом образуют регулятор температуры по отклонению регулируемой температуры от заданного значения. Второе измерительное устройство, второе задающее устройство, второе сравнивающее устройство, трехходовой перепускной клапан с приводом образуют регулятор температуры по мощности тепловой машины (первому возмущающему воздействию). Третье измерительное устройство, третье задающее устройство, третье сравнивающее устройство, трехходовой перепускной клапан с приводом образуют регулятор температуры по температуре топлива, забираемого из топливного бака (второму возмущающему воздействию). Функции первого, второго и третьего задающих устройств, первого, второго и третьего сравнивающих устройств выполняет микропроцессорный контроллер, обеспечивающий в соответствии с алгоритмами, заложенными в программу его работы, требуемые статические и динамические характеристики автоматической комбинированной микропроцессорной системы регулирования температуры топлива тепловой машины. 3 ил.

 

Предлагаемое изобретение может быть применено в тепловых машинах, в частности в двигателях внутреннего сгорания, и может быть использовано при эксплуатации дизелей, работающих на вязком или маловязком видах топлива.

Уровень техники

Известны системы, совокупность признаков которых сходна с совокупностью существенных признаков предлагаемого изобретения.

Известна система подогрева топлива дизеля тепловоза [Тепловоз ТЭМ7. /А.В.Балашов, Г.С.Меликджанов, Л.А.Михальчук и др. - М.: Транспорт, 1989. - стр.96-102], содержащая топливный бак, фильтр грубой очистки топлива, топливоподкачивающий насос с предохранительным клапаном, топливоподогреватель, связанный с системой охлаждения дизеля, фильтр тонкой очистки топлива, топливные насосы высокого давления, форсунки, подпорный клапан, трубопроводы.

Недостатками такой неавтоматической системы подогрева топлива является существенная зависимость температуры топлива перед топливным насосом высокого давления от температуры охлаждающей воды дизеля на входе в топливоподогреватель, от температуры наружного воздуха (то есть от температуры топлива, забираемого топливоподкачивающим насосом из топливного бака), от расхода топлива через топливоподогреватель (то есть от мощности дизеля), а также от теплотехнических параметров и характеристик топливоподогревателя. Такая неавтоматическая система подогрева топлива не может обеспечить требуемую зависимость температуры топлива перед топливным насосом высокого давления. Таким образом, системы подогрева топлива применяются для повышения температуры топлива в топливном баке в холодное время года, так как при низкой температуре топлива из него выделяются парафинистые вещества, которые засоряют трубопроводы, арматуру и особенно фильтры. Такая неавтоматическая система подогрева топлива не может быть применена в дизелях с воздушным охлаждением и в случаях, когда требуется подогревать топливо до температуры, более высокой, чем температура топлива при подогреве его охлаждающей средой тепловой машины, обычно водой. В этих случаях для подогрева топлива используются отработавшие газы тепловой машины.

Известен способ питания двигателя внутреннего сгорания, заключающийся в том, что с целью повышения экономичности изменяют температуру топлива перед топливным насосом высокого давления в зависимости от режима работы двигателя по линейному закону от 70 до 20°С в соответствии с ростом нагрузки от режима холостого хода до номинального режима работы двигателя [Способ питания двигателя внутреннего сгорания. А.с. СССР №1560767, кл. F02M 53/00, 1990]. В этом изобретении не приведены технические решения по реализации предложенного способа.

Известен смеситель с автоматическим регулятором температуры топлива в системе топливоподачи дизеля [Смеситель с автоматическим регулятором температуры топлива в системе топливоподачи дизеля. Патент РФ №2094644, кл. 6 F02M 37/00, 1997]. Этот смеситель нагретого и ненагретого топлива содержит корпус с заборным и дренажным каналами и направляющей трубой, цилиндрический стакан, закрепленный на корпусе коаксиально с последней, коническую воронку с цилиндрическим патрубком, установленную с возможностью перемещения вдоль оси направляющей трубы, причем в патрубке и направляющей трубе выполнены отверстия, расположенные с возможностью перепуска дренажного нагретого топлива непосредственно в направляющую трубу, смеситель снабжен датчиком температуры с термочувствительным элементом, установленным в заборном канале соосно с направляющей трубой, втулкой, установленной с возможностью взаимодействия с конусной втулкой, а в последней выполнены отверстия с возможностью сообщения направляющей трубы с заборным каналом; причем оси отверстий в патрубке, направляющей трубе и втулке выполнены под углом к оси направляющей трубы.

Первым существенным недостатком этого известного устройства является то, что температура топлива в заборном канале, а значит и на входе в топливный насос высокого давления, изменяется в пределах 30-40°С и не зависит от мощности дизеля, а зависит только от температуры топлива в топливном баке и от расхода топлива дизелем.

Вторым существенным недостатком этого известного устройства является то, что в нем в регуляторе температуры применен датчик температуры с твердым наполнителем церезином. Известно [Луков Н.М. Автоматическое регулирование температуры двигателей. - М.: Машиностроение, 1995 (стр.92-98)], что такие датчики температуры даже в воде обладают большой инерционностью. Очевидно, что их инерционность в топливе будет еще больше, так как коэффициент теплоотдачи от топлива к датчику меньше, чем от воды к датчику. Повышенная инерционность датчика температуры снижает устойчивость и качество работы системы регулирования температуры, приводит к колебаниям температуры в широком диапазоне. Значительная несимметричность динамических и неоднозначность статических характеристик датчиков температуры с твердым наполнителем также снижают устойчивость и ухудшают качество работы систем регулирования температуры.

Аналог предлагаемого изобретения, наиболее близкий к нему по совокупности существенных признаков (прототип)

Известно устройство для подогрева топлива в дизеле [Устройство для подогрева топлива в дизеле. А.с. СССР №676746, М. кл.5 F02M 31/08], преимущественно с прямоточной продувкой, содержащее подогреватель топлива, встроенный в линию высокого давления, размещенный в выхлопном коллекторе и снабженный защитным тепловым экраном, связанным через обратную отрицательную связь с датчиком режима работы двигателя, который выполнен в виде сильфона и установлен в выхлопном коллекторе дизеля или в линии высокого давления.

Это устройство имеет существенные недостатки. Оно обеспечивает в одном случае изменение положения защитного теплового экрана (то есть степени подогрева топлива) в зависимости от температуры отработавших газов, а во втором случае - в зависимости от температуры топлива. В результате такое устройство не может обеспечить требуемую зависимость температуры топлива от мощности тепловой машины и независимость этой температуры от температуры топлива на входе в топливоподогреватель, то есть независимость от условий работы тепловой машины.

Сущность изобретения

Как известно, любая автоматическая система содержит две основные функциональные части: объект регулирования ОР и автоматический регулятор АР. Любой автоматический регулятор АР содержит две основные соединенные последовательно функциональные части: управляющий орган УО и исполнительно-регулирующее устройство ИРУ. Управляющий орган УО содержит устройства: измерительное (ИУ), задающее (ЗУ), сравнивающее (СУ), усилительно-преобразующее (УУ). В свою очередь исполнительно-регулирующее устройство ИРУ содержит две основные соединенные последовательно функциональные части: исполнительный механизм ИМ и регулирующий орган РО.

Функциональная схема предлагаемой автоматической комбинированной микропроцессорной системы регулирования температуры топлива тепловой машины представлена на фиг.1. Обозначения на схеме: ОР (поз.1) - объект регулирования; ИУ1 (поз.2) - измерительное устройство (датчик регулируемой величины φ); ИУ2 (поз.3), ИУ3 (поз.4) - измерительные устройства (датчики) основных возмущающих воздействий λ1 и λ2; СУ1 (поз.5), СУ2 (поз.6), СУ3 (поз.7) - сравнивающие устройства; ЗУ1 (поз.8), ЗУ2 (поз.9), ЗУ3 (поз.10) - задающие устройства (задатчики заданных значений величин); РО (поз.11) - регулирующий орган; ИМ (поз.12) - исполнительный механизм; ИРУ (поз.13) - исполнительно-регулирующее устройство; µ - регулирующее воздействие на ОР; hим - выходной сигнал ИМ; xд1÷3 - выходные сигналы датчиков; Хз1÷3 - выходные сигналы задатчиков; Δхсу - выходные сигналы СУ; η1÷3 - сигналы задания.

Предлагаемая автоматическая комбинированная микропроцессорная система регулирования температуры топлива тепловой машины (см. фиг.2) содержит следующие основные элементы: топливный бак 14, фильтр грубой очистки топлива 15, топливоподкачивающий насос 16, предохранительный клапан 17, газовый топливоподогреватель 18, датчик 2 температуры Т1 топлива на входе в топливные насосы высокого давления тепловой машины 19, фильтр тонкой очистки топлива 20, газовый трехходовой перепускной клапан 11 с приводом 12, управляющий орган 21 тепловой машины 19, подпорный клапан 22, выхлопной коллектор 23 тепловой машины 19, газовые перепускные трубопроводы 24 и 25, датчик 4 температуры Т4 топлива, забираемого топливоподкачивающим насосом 16 из топливного бака 14, микропроцессорный контроллер (МПК) 26, к трем входам которого подключены датчики 2 и 4 и управляющий орган 21, а к выходу его подключен привод 12 клапана 11. На фиг.2 обозначениям T2 и T3 соответствует температура отработавших газов на выходе из тепловой машины 19 и температура отработавших газов на выходе газового топливоподогревателя 18.

В предлагаемой автоматической комбинированной микропроцессорной системе регулирования температуры топлива тепловой машины функции ОР выполняет система подогрева топлива (СПТ), функции ИУ1 выполняет датчик 2 температуры Т1 топлива на входе в топливные насосы высокого давления тепловой машины, функции ИУ2 выполняет датчик 3 мощности Ne тепловой машины, входящий в состав управляющего органа 21, ИУ3 - датчик 4 температуры Т4 топлива, забираемого из топливного бака 14, функции РО выполняет газовый трехходовой перепускной клапан 11, а функции ИМ - привод 12 клапана 11. Датчики температуры 2 и 4 - малоинерционные электрические. Функциональные элементы системы регулирования ИУ1, ЗУ1, СУ1, ИМ и РО образуют регулятор температуры по отклонению регулируемой температуры Т1 от заданного значения, функциональные элементы ИУ2, ЗУ2, СУ2, ИМ и РО - регулятор температуры Т1 по мощности Ne (по возмущающему воздействию λ1) тепловой машины, а функциональные элементы ИУ3, ЗУ3, СУ3, ИМ и РО - регулятор температуры Т1 по температуре Т4 топлива, забираемого из топливного бака (по возмущающему воздействию λ2). Регулятор температуры по отклонению вместе с ОР образует замкнутый контур в системе регулирования, а регуляторы по возмущениям - разомкнутые контуры. В предлагаемой системе функции всех задающих устройств ЗУ1, ЗУ2 и ЗУ3 и сравнивающих устройств СУ1, СУ2 И СУ3 выполняет микропроцессорный контроллер 26.

Автоматическая система регулирования температуры с П-регулятором статическая. Статическая система регулирования температуры поддерживает регулируемую температуру Т1 в пределах положительной статической неравномерности (см. фиг.3), в результате чего регулируемая температура Т1 изменяется как при изменении мощности Ne тепловой машины, так и при изменении температуры Т2 топлива на входе в топливоподогреватель (характеристика 1 на фиг.3).

В предлагаемой автоматической комбинированной микропроцессорной системе регулирования температуры Т1 топлива тепловой машины используется два дополнительных сигнала управления: по мощности Ne тепловой машины и по температуре Т4 топлива, забираемого из топливного бака, поэтому эта система является автоматической комбинированной микропроцессорной системой регулирования с сигнальной компенсацией действия основных возмущений λ1 и λ2: мощности Ne (расхода топлива) тепловой машины и температуры Т4 топлива, забираемого из топливного бака. Использование дополнительных сигналов управления позволяет получить требуемую статическую характеристику системы регулирования температуры топлива с отрицательной статической неравномерностью по мощности Ne и статическую неравномерность, равную нулю, по температуре Т4 топлива, забираемого из топливного бака, и значительно увеличить запасы устойчивости системы и показатели качества ее работы (относительное перерегулирование, время регулирования и др.), то есть уменьшить амплитуду колебаний температуры Т1 топлива на входе в топливные насосы тепловой машины.

Предлагаемая автоматическая комбинированная микропроцессорная система регулирования температуры топлива тепловой машины в соответствии с алгоритмами, заложенными в программу работы микропроцессорного контроллера 26, работает следующим образом.

При значении регулируемой температуры Т1 топлива, равной максимальному значению T1макс, при мощности Ne тепловой машины, равной мощности холостого хода, при температуре Т4 топлива, забираемого из топливного бака, равной Т4мин, выходной сигнал датчика температуры 2 IT1 максимальный, а датчика температуры 4 IT4 - минимальный. Выходной сигнал микропроцессорного контроллера 26 Iмпк имеет максимальное значение, при этом выходной сигнал привода 12 имеет максимальное значение и клапан 11 открыт полностью, обеспечивая максимальный расход Q3макс отработавших газов тепловой машины 19 через газовый топливоподогреватель 18. При этом осуществляется максимально возможный подогрев топлива.

Если мощность Ne тепловой машины 19 начнет увеличиваться, то это приводит к увеличению выходного сигнала Iуо управляющего органа 21 и к уменьшению выходного сигнала Iмпк микропроцессорного контроллера 26, что в свою очередь приводит к уменьшению расхода Q3, отработавших газов тепловой машины 19 через газовый топливоподогреватель 18, к уменьшению теплоотвода в нем и к уменьшению температуры Т1. Такое изменение расхода Q3 отработавших газов тепловой машины 19 через газовый топливоподогреватель 18 происходит каждый раз при изменении мощности Ne тепловой машины 19.

Увеличение температуры Т4 топлива, забираемого из топливного бака, приводит к увеличению выходного сигнала IT4 датчика температуры 4, к уменьшению выходного сигнала Iмпк микропроцессорного контроллера 26. Это в свою очередь приводит к уменьшению расхода Q3 отработавших газов тепловой машины 19 через газовый топливоподогреватель 18 и к уменьшению теплоотвода в газовом топливоподогревателе 18. Такое изменение расхода Q3 отработавших газов тепловой машины 19 через газовый топливоподогреватель 18 происходит каждый раз при изменении температуры Т4 топлива, забираемого из топливного бака. В результате этого регулируемая температура топлива Т1 остается постоянной при изменении температуры Т4 топлива, забираемого из топливного бака, в широких пределах.

Таким образом, изменения мощности Ne тепловой машины 19 или температуры Т4 топлива, забираемого из топливного бака, приводят к соответствующим изменениям расхода Q3 отработавших газов тепловой машины 19 через газовый топливоподогреватель 18 при сохранении регулируемой температуры Т1 на заданном уровне (в соответствии со статической характеристикой системы регулирования температуры Т1), то есть Q3 (T1, Т4, Ne). Такое комбинированное регулирование температуры Т1 с использованием дополнительных сигналов управления по мощности Ne и по температуре Т4, которые суммируются с сигналом по регулируемой температуре Т1 в соответствии с алгоритмом, заложенным в программу работы микропроцессорного контроллера 26, обеспечивает точное поддержание ее на заданном уровне без колебаний и повышает экономичность тепловой машины.

Технический результат - повышение топливной экономичности тепловой машины за счет обеспечения оптимальных значений температуры топлива перед топливным насосом высокого давления в зависимости от режима работы машины и независимо от условий ее работы.

Предлагаемая автоматическая комбинированная микропроцессорная система регулирования температуры топлива тепловой машины не имеет недостатков, присущих известным системам подогрева топлива. Повышение температуры топлива перед насосом высокого давления дизеля приводит, с одной стороны, к повышению качества смесеобразования, уменьшению времени подготовки топлива, а с другой стороны, вызывает ухудшение характеристик закона подачи топлива. Совокупность этих факторов оказывает влияние на расход топлива дизелем, который изменяется по-разному в зависимости от мощности. Экспериментально определена линейная зависимость температуры топлива перед насосом высокого давления дизеля от его мощности: при работе дизеля на холостом ходу эта температура должна составлять 70°С, а при номинальной мощности температура топлива должна составлять 20°С. Таким образом, автоматическая система регулирования температуры топлива тепловой машины должна иметь отрицательную статическую неравномерность по мощности, равную 50°С.

Технический результат достигается за счет того, что автоматическая комбинированная микропроцессорная система регулирования температуры топлива тепловой машины, содержащая топливный бак, фильтр грубой очистки топлива, топливоподкачивающий насос, предохранительный клапан, фильтр тонкой очистки топлива, управляющий орган тепловой машины, подпорный клапан, дополнительно содержит: первое измерительное устройство, предназначенное для измерения температуры топлива на входе в топливные насосы высокого давления тепловой машины; второе измерительное устройство, предназначенное для измерения мощности тепловой машины; третье измерительное устройство, предназначенное для измерения температуры топлива, забираемого топливоподкачивающим насосом из топливного бака; газовый топливоподогреватель, предназначенный для подогрева топлива отработавшими газами тепловой машины; трехходовой перепускной клапан с приводом, установленный в газовых перепускных трубопроводах между газовым топливоподогревателем и выхлопным коллектором тепловой машины, предназначенным для отвода отработавших газов; первое, второе и третье задающие устройства; первое, второе и третье сравнивающие устройства. Третье сравнивающее устройство связано с третьим измерительным устройством и третьим задающим устройством, второе сравнивающее устройство связано со вторым измерительным устройством и вторым задающим устройством, а первое сравнивающее устройство связано с первым измерительным устройством, первым задающим устройством, вторым и третьим сравнивающими устройствами, а также приводом трехходового перепускного клапана. Первое измерительное устройство, первое задающее устройство, первое сравнивающее устройство, трехходовой перепускной клапан с приводом образуют регулятор температуры по отклонению регулируемой температуры от заданного значения. Второе измерительное устройство, второе задающее устройство, второе сравнивающее устройство, трехходовой перепускной клапан с приводом образуют регулятор температуры по мощности тепловой машины (первому возмущающему воздействию). Третье измерительное устройство, третье задающее устройство, третье сравнивающее устройство, трехходовой перепускной клапан с приводом образуют регулятор температуры по температуре топлива, забираемого из топливного бака (второму возмущающему воздействию). Функции первого, второго и третьего задающих устройств, первого, второго и третьего сравнивающих устройств выполняет микропроцессорный контроллер, обеспечивающий в соответствии с алгоритмами, заложенными в программу его работы, требуемые статические и динамические характеристики автоматической комбинированной микропроцессорной системы регулирования температуры топлива тепловой машины.

Перечень фигур

Фиг.1. Функциональная схема автоматической комбинированной микропроцессорной системы регулирования температуры топлива тепловой машины.

Фиг.2. Принципиальная блок-схема предлагаемой автоматической комбинированной микропроцессорной системы регулирования температуры топлива тепловой машины.

Фиг.3. Статические характеристики автоматических систем регулирования температуры: 1 - c П-регулятором при Т2мин; 2 - с П-регулятором при Т2макс; 3 и 4 - с комбинированными регуляторами температуры.

Список использованных источников

1. Луков Н.М. Основы автоматики и автоматизации тепловозов. - М.: Транспорт, 1989.

2. Тепловоз ТЭМ7. / А.В.Балашов, Г.С.Меликджанов, Л.А.Михальчук и др. - М.: Транспорт, 1989. - 295 с.

3. Способ питания двигателя внутреннего сгорания. А.с. СССР №1560767, М. кл. F02M 53/00, 1990.

4. Смеситель с автоматическим регулятором температуры топлива в системе топливоподачи дизеля. Патент РФ №2094644, М. кл. 6 F02M 37/00, 1997.

5. Луков Н.М. Автоматическое регулирование температуры двигателей. - М.: Машиностроение, 1995.

6. Устройство для подогрева топлива в дизеле. А.с. СССР №676746. М. кл.5 F02M 31/08.

Автоматическая комбинированная микропроцессорная система регулирования температуры топлива тепловой машины, содержащая топливный бак, фильтр грубой очистки топлива, топливоподкачивающий насос, предохранительный клапан, фильтр тонкой очистки топлива, управляющий орган тепловой машины, подпорный клапан, отличающаяся тем, что она дополнительно содержит: первое измерительное устройство, предназначенное для измерения температуры топлива на входе в топливные насосы высокого давления тепловой машины; второе измерительное устройство, предназначенное для измерения мощности тепловой машины; третье измерительное устройство, предназначенное для измерения температуры топлива забираемого топливоподкачивающим насосом из топливного бака; газовый топливоподогреватель, предназначенный для подогрева топлива отработавшими газами тепловой машины; трехходовой перепускной клапан с приводом, установленный в газовых перепускных трубопроводах между газовым топливоподогревателем и выхлопным коллектором тепловой машины, предназначенным для отвода отработавших газов; первое, второе и третье задающие устройства; первое, второе и третье сравнивающие устройства; третье сравнивающее устройство связано с третьим измерительным устройством и третьим задающим устройством, второе сравнивающее устройство связано со вторым измерительным устройством и вторым задающим устройством, а первое сравнивающее устройство связано с первым измерительным устройством, первым задающим устройством, вторым и третьим сравнивающими устройствами, а также приводом трехходового перепускного клапана; первое измерительное устройство, первое задающее устройство, первое сравнивающее устройство, трехходовой перепускной клапан с приводом образуют регулятор температуры по отклонению регулируемой температуры от заданного значения; второе измерительное устройство, второе задающее устройство, второе сравнивающее устройство, трехходовой перепускной клапан с приводом образуют регулятор температуры по мощности тепловой машины (первому возмущающему воздействию); третье измерительное устройство, третье задающее устройство, третье сравнивающее устройство, трехходовой перепускной клапан с приводом образуют регулятор температуры по температуре топлива, забираемого из топливного бака (второму возмущающему воздействию); причем функции первого, второго и третьего задающих устройств, первого, второго и третьего сравнивающих устройств выполняет микропроцессорный контроллер, обеспечивающий в соответствии с алгоритмами, заложенными в программу его работы, требуемые статические и динамические характеристики автоматической комбинированной микропроцессорной системы регулирования температуры топлива тепловой машины.



 

Похожие патенты:

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания, и может быть использовано при эксплуатации дизелей, работающих на вязком или маловязком видах топлива.

Изобретение относится к системам приготовления топливно-воздушной смеси ДВС. .

Изобретение относится к системам приготовления топливовоздушной смеси ДВС. .

Изобретение относится к системам приготовления топливовоздушной смеси ДВС. .

Изобретение относится к двигателестроению, в частности к топливной аппаратуре двигателей внутреннего сгорания. .

Изобретение относится к области двигателестроения, в частности к способам воспламенения рабочей смеси и форсункам. .

Изобретение относится к двигателестроению, в частности к системам впрыска топлива в двигатель внутреннего сгорания. .

Изобретение относится к двигателестроению, к аккумуляторным системам подачи топлива в дизель. .

Изобретение относится к двигателестроению, в частности к топливным насосам высокого давления (ТНВД) для двигателей внутреннего сгорания (ДВС). .

Изобретение относится к двигателестроению, в частности к топливной аппаратуре. .

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания, и может быть использовано при эксплуатации дизелей, работающих на вязком или маловязком видах топлива.

Изобретение относится к устройству распознавания перебоев зажигания двигателя для двигателя внутреннего сгорания (ДВС), транспортному средству, оборудованному таким устройством, и способу распознавания перебоев зажигания двигателя.

Изобретение относится к способу и устройству контроля арифметического логического модуля (АЛМ) в транспортном средстве. .

Изобретение относится к области автоматических систем регулирования температуры теплоносителей в системах охлаждения энергетических установок транспортных средств.

Изобретение относится к области использования двигателей внутреннего сгорания в машинах и машинных агрегатах различного назначения, в частности, предназначено для применения в транспортных средствах, снабженных коробкой передач со ступенчатым изменением передаточного числа и вариатором с бесступенчатым регулированием частоты вращения.

Изобретение относится к автоматическому регулированию двигателей внутреннего сгорания. .

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания, и может быть использовано при эксплуатации дизелей, работающих на вязком или маловязком видах топлива.
Наверх