Волоконно-оптический уровнемер и способ его изготовления

Изобретение относится к контрольно-измерительной технике и может быть использовано для дискретного измерения уровня прозрачной для инфракрасного излучения жидкости на изделиях ракетно-космической техники (РКТ). Сущность: волоконно-оптический уровнемер содержит источники и приемники излучения, подводящие и отводящие оптические волокна, стержни круглого сечения с шаровидными сегментами. При этом радиус стержней определяется выражением d≤R≤1,5dов, где dов - диаметр оболочки оптического волокна. К каждому стержню подводятся по одному подводящему и одному отводящему волокну. В конструкцию введены труба длиной не менее максимального значения измеряемого уровня жидкости со сквозными отверстиями на боковой поверхности, Г-образные корпуса, состоящие из неподвижно соединенных между собой полых трубок, втулок, наконечников в виде конуса. Отверстия в верхней части полой трубки совмещены с отверстиями в трубе, а в отверстиях наконечников закреплены стержни. Все оптические волокна проходят внутри трубы и через отверстия в трубе подводятся к стержням, причем количество отверстий, Г-образных корпусов, стержней соответствует количеству точек съема информации об уровне жидкости. Способ изготовления волоконно-оптического уровнемера заключается в том, что нарезают оптические волокна в количестве 2n, где n - количество контролируемых точек уровня жидкости. Волокна соединяют в два жгута, объединяемых в общий жгут, который протягивают через трубу. Через отверстия в трубе, начиная с самого нижнего и перемещаясь вверх по трубе, протягивают свободные концы одного подводящего оптического и одного отводящего волокон последовательно, начиная с самых длинных. Пропускают оптические волокна через полые трубки корпусов и вклеивают их во втулки. Вклеивают стержни в наконечники. Наконечниками прижимают втулки к нижнему торцу полых трубок корпусов и в местах их соединений сваривают. Верхние части корпусов соединяют с трубой. Заглушкой закрывают с нижнего конца трубу, свободные торцы подводящих оптических волокон подводят к источникам излучения, а отводящих оптических волокон - к приемникам излучения. Технический результат - возможность контроля нескольких значений уровня, снижение погрешности от эффекта смачивания за счет уменьшения радиуса сегмента, работоспособность в жестких условиях РКТ, повышение искро-, пожаро-, взрывобезопасности. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения уровня жидкости с коэффициентом преломления n>1,25, прозрачной для инфракрасного излучения (например, уровня топлива в топливных баках), в условиях воздействия вибраций, ударов, изменения температуры окружающей среды в диапазоне минус 100…+150°С (и более) на изделиях авиационной, ракетно-космической техники и в других отраслях техники.

В результате поиска по источникам патентной и технической информации не обнаружены устройства с совокупностью существенных признаков, совпадающих с предлагаемым изобретением и обеспечивающих заявленный технический результат.

Известен волоконно-оптический уровнемер, содержащий последовательно соединенные источник излучения, волоконно-оптическую линию передачи, чувствительный элемент, выполненный в виде световода, и приемник излучения. Чувствительный элемент выполнен в виде прямолинейного волоконно-оптического световода с изменяющимся вдоль оптической оси показателем преломления материала. Значение показателя преломления уменьшается снизу вверх в соответствии с определенными соотношениями (Патент СССР 1280329 А1, кл. G01F 23/22, опубл. 30.12.86).

Недостатком указанного уровнемера является технологическая сложность получения с заданной точностью световода с изменяющимся вдоль оптической оси показателем преломления материала. При заполнении емкости жидкостью под большим напором, а также при наличии вибраций, ударов возможна поломка световода.

Наиболее близким по технической сущности к предлагаемому изобретению является волоконно-оптический сигнализатор уровня жидкости, содержащий источник и приемник излучения, подводящее и отводящие оптические волокна, чувствительный элемент, выполненный в виде стержня круглого сечения с шаровым сегментом на рабочем торце из оптически прозрачного материала с определенным коэффициентом преломления (Патент РФ 2297602 С1, кл. G01F 23/22, опубл. 20.04.07 (прототип)).

Недостатком данного сигнализатора является отсутствие возможности контролировать несколько значений уровня жидкости.

Техническим результатом является расширение функциональных возможностей за счет дискретного измерения уровня жидкости в требуемом диапазоне измерения.

Указанный технический результат достигается тем, что:

1 - в известном волоконно-оптическом уровнемере, содержащем источники и приемники излучения, подводящие и отводящие оптические волокна, стержни круглого сечения с шаровидными сегментами, обращенными в сторону измеряемой жидкости из оптически прозрачного материала, для которого выполняется условие:

где nСР, nЖ, n1 - показатели преломления окружающей среды, жидкости и стержня соответственно,

новым является то, что радиус стержней определяется выражением

где dов - диаметр оболочки оптического волокна,

к каждому стержню подходит по одному подводящему и одному отводящему волокну, в конструкцию введены труба длиной не менее максимального значения измеряемого уровня жидкости со сквозными отверстиями на боковой поверхности, жестко закрепленные на трубе Г-образные корпуса, состоящие из неподвижно соединенных между собой полых трубок, втулок со сквозным внутренним отверстием, наконечников в виде конуса с цилиндрическим сквозным отверстием, в которых закреплены стержни, внешние контуры частей корпуса в местах их соединений одинаковые, причем отверстия в верхней части полой трубки совмещены с отверстиями в трубе, а в отверстиях наконечников закреплены стержни, все оптические волокна проходят внутри трубы и через отверстия в трубе подводятся к стержням, причем количество отверстий, Г-образных корпусов, стержней соответствует количеству точек съема информации об уровне жидкости;

2 - новым является способ изготовления волоконно-оптического уровнемера по п.1, заключающийся следующем:

1) нарезают оптические волокна в количестве 2n, где n - количество контролируемых точек уровня жидкости, причем длина Li двух отдельных i-x волокон определяется соотношениями:

а) когда точки контроля уровня жидкости равноудалены:

б) когда точки контроля уровня жидкости распределены по длине емкости неравномерно:

где L - длина участка от источника 1 или приемника излучения 11 до емкости;

H - высота емкости (или расстояние от верхней границы емкости до последней точки съема информации);

Δi - расстояние между ближайшими точками съема информации, i=1, 2,…, n - порядковый номер точки;

2) торцы оптических волокон полируют;

3) оптические волокна соединяют в два жгута таким образом, чтобы все подводящие оптические волокна находились в первом жгуте, а все отводящие оптические волокна - во втором жгуте;

4) первый и второй жгуты объединяют в общий жгут таким образом, чтобы с одного конца все волокна находились на одном уровне (в одной плоскости), а с другого конца находились в свободном состоянии на расстоянии

где la, lb- длины верхней и нижней части корпуса соответственно;

5) протягивают общий жгут через трубу таким образом, чтобы нижние концы самых длинных оптических волокон выступали за торец трубы на длину

6) через отверстия в трубе, начиная с самого нижнего и перемещаясь вверх по трубе, протягивают свободные концы одного подводящего оптического волокна и одного отводящего оптического волокна последовательно, начиная с самых длинных.

Дальнейшие действия по 7)-10) последовательно осуществляются для каждого корпуса:

7) пропускают оптические волокна через полые трубки корпусов и вклеивают их с помощью клеящего состава во втулки таким образом, чтобы рабочие торцы оптических волокон были расположены в плоскости поверхности втулок, обращенных к наконечнику;

8) вклеивают стержни в наконечники таким образом, чтобы сферические сегменты располагались с узкой стороны конуса;

9) наконечниками прижимают втулки к нижнему торцу полых трубок корпусов и в местах их соединений сваривают;

10) верхние части корпусов соединяют с помощью сварки с трубой;

11) заглушкой закрывают с нижнего конца трубу и закрепляют с помощью сварки;

12) свободные торцы подводящих оптических волокон подводят к источникам излучения, а отводящих оптических волокон - к приемникам излучения.

Таким образом, предлагаемое изобретение представляет собой техническое решение задачи, являющееся новым, промышленно применимым и обладающим изобретательским уровнем, т.е. предлагаемое изобретение отвечает критериям патентоспособности.

На фиг.1 приведена упрощенная конструктивная схема предлагаемого волоконно-оптического уровнемера, на фиг.2 - процесс изготовления волоконно-оптического уровнемера, на фиг.3а - схема распространения света в одном оптическом канале предлагаемого волоконно-оптического уровнемера, на фиг.3б - графические пояснения к определению геометрических параметров уровнемера.

Волоконно-оптический уровнемер содержит источники излучения 1, например полупроводниковые светодиоды, подводящие 2 и отводящие 3 оптические волокна, оптические стержни 4, Г-образные корпуса 5, состоящие из трех частей: полых трубок 6, втулок 7 со сквозным внутренним отверстием, наконечников 8 в виде конуса с цилиндрическим сквозным отверстием, трубу 9, заглушку 10, приемники излучения 11, например фотодиоды (фиг.1).

С источниками излучения 1 состыкованы подводящие оптические волокна 2, количество которых равно количеству точек съема информации об уровне жидкости.

Стержни 4 имеют круглое сечение и выполнены с шаровидными сегментами на рабочем торце, обращенными в сторону жидкости, радиусом R, определяемым условием (2), из оптически прозрачного материала, например из кварцевого стекла, для которого выполняется условие (1).

Цилиндрическая часть стержней 4 закрепляется в конусообразном наконечнике 6 корпуса 5 с помощью соединительного состава 12 с коэффициентом преломления n1, меньшим коэффициента преломления жидкости nЖ (n1<nЖ), уровень которой измеряется, при этом шаровой сегмент выступает за пределы части 6 корпуса 5 на значение, равное R.

Подводящее оптическое волокно 2 и отводящее оптическое волокно 3 закреплены во втулке 7 корпуса 5 с помощью клея 13, обладающего большой упругостью. Части 6, 7, 8 корпуса 5 соединены между собой с помощью сварки 14, при этом центры торцов подводящего оптического волокна 2 и отводящего оптического волокна 3 смещены относительно центра торца стержня 4 на значение, равное (dов/2…1,5 dов/2). Количество корпусов соответствует количеству точек съема информации об уровне жидкости.

Труба 9 изготавливается длиной не менее максимального значения измеряемого уровня жидкости. Поперечное сечение трубы может быть круглым или прямоугольным. На фиг.1 для примера приведена круглая труба. В трубе просверлены сквозные отверстия так, чтобы их оси были перпендикулярны продольной оси трубы. Например, как показано на фиг.1, отверстия выполнены равномерно по спирали с равномерным шагом, соответствующим расстоянию между точками съема информации. Количество отверстий соответствует количеству точек съема информации об уровне жидкости.

Корпуса 5 крепятся к трубе 9 с помощью сварки 15 так, чтобы отверстия в верхней части корпуса 5 были совмещены с отверстиями в трубе 9.

Герметизация трубы осуществляется с помощью заглушки 10, которая крепится к трубе 9 с помощью сварки 16. Внутренняя полость 17 трубы 9 заполняется герметиком 18 (на фиг.1 не показан) в целях исключения поломок оптических волокон при воздействии вибрации, ударов и т.п.

Отводящие оптические волокна 3, количество которых равно количеству точек съема информации об уровне жидкости, соединены с приемниками излучения 11.

Оптические волокна 2 и 3 проходят внутри трубы 9 и через отверстия в трубе 9 протянуты к приемному торцу стержня 4.

Способ изготовления волоконно-оптического уровнемера заключается в следующем (фиг.2).

1) Нарезают оптические волокна в количестве 2n, где n - количество контролируемых точек уровня жидкости, причем длина Li двух отдельных i-x волокон определяется соотношениями (3), когда точки контроля уровня жидкости равноудалены, соотношениями (4), когда точки контроля уровня жидкости распределены по длине емкости неравномерно (см. фиг.2а).

2) Торцы оптических волокон 2 и 3 полируют.

3) Оптические волокна соединяют в два жгута 20 и 21 таким образом, чтобы все подводящие оптические волокна 2 находились в одном жгуте 20, а все отводящие оптические волокна 3 - в жгуте 21 (см. фиг.2б).

4) Жгуты 20 и 21 объединяют в общий жгут 22 (см. фиг.2в) таким образом, чтобы с одного конца все волокна находились в одной плоскости, а с другого конца находились в свободном состоянии на расстоянии, определяемом выражением (5) (см. фиг.3).

5) Протягивают жгут 22 через трубу 9 таким образом, чтобы нижние концы самых длинных оптических волокон 2 и 3 выступали за торец трубы 9 на длину, определяемую выражением (6) (см. фиг.2г).

6) С помощью приспособления в виде крючка через отверстия (начиная с самого нижнего и перемещаясь вверх по трубе 9) в трубе 9 протягивают свободные концы одного подводящего оптического волокна 2 и одного отводящего оптического волокна 3 последовательно, начиная с самых длинных (см. фиг.2д).

Дальнейшие действия по 7)-13) последовательно осуществляются для каждого корпуса 5 (см. фиг.1).

7) Пропускают оптические волокна 2 и 3 через полые трубки 8 и вклеивают их с помощью клеящего состава 13 во втулки 7. Наличие клеящего состава 13 на рабочих торцах волокон 2, 3 не допускается.

9) Втулки 7 устанавливают в паз наконечников 8.

10) Вклеивают стержни 4 с помощью клеящего состава 12 в наконечники 6 таким образом, чтобы сферические сегменты располагались с узкой стороны конуса. Наличие клеящего состава 12 на сферических сегментах и торцах стержней 4 не допускается.

11) Наконечниками 6 прижимают втулку 7 к трубочке 8 корпуса 5.

12) Части 6, 7, 8 корпуса 5 соединяют между собой сваркой 14.

13) Верхние части корпуса 5 соединяют с помощью сварки 15 с трубой 9.

14) Заглушкой 10 закрывают с нижнего конца трубу 9 и закрепляют с помощью сварки 16.

15) Герметиком 18 (на фиг.1 не показан) заполняют внутреннюю полость 17 трубы 9.

16) Свободные торцы подводящих оптических волокон 2 подводят к источникам излучения 1, а отводящих оптических волокон 3 - к приемникам излучения 11.

Один измерительный канал волоконно-оптического уровнемера работает следующим образом (см. фиг.3а).

Излучение источника излучения 1 направляется по подводящему оптическому волокну 2 к стержню 4. Поток излучения, излучаемый торцом подводящего оптического волокна 2, падает на входной торец стержня 4, преломляется и распространяется по нему путем переотражения от цилиндрической поверхности до шарового сегмента (Патент РФ 2297602 С1, кл. G01F 23/22, опубл. 20.04.07).

При отсутствии контакта шарового сегмента стержня 4 с жидкостью лучи света за счет выполнения условия полного внутреннего отражения отражаются от поверхности стрежня и возвращаются обратно к входному торцу стержня 4, преломляются и выходят из стержня 4, падая на приемный торец отводящего оптического волокна 3. По отводящему оптическому волокну 3 поток излучения распространяется до приемника излучения 11, где происходит его преобразование в электрический сигнал (напряжение).

При контакте шарового сегмента с жидкостью происходит нарушение условия полного внутреннего отражения и большая часть излучения выходит из стержня (см. фиг.3, точка А), оставшаяся меньшая часть по отводящему оптическому волокну 3 распространяется до приемника излучения 11.

Таким образом, наличию жидкости в зоне измерения соответствует высокий уровень напряжения приемника излучения 11, отсутствию жидкости - низкий уровень напряжения.

Аналогичным образом работают другие измерительные каналы волоконно-оптического уровнемера (см. фиг.3б).

Повышение или понижение уровня жидкости в емкости 19 ведет к последовательному срабатыванию измерительных каналов. Сигналы с приемников излучения 11 в дальнейшем могут передаваться в систему обработки информации, которая может выдавать сигнал в виде последовательного дискретного повышения или понижения напряжения соответственно при повышении и понижении уровня жидкости или обрабатывать индивидуально сигналы с каждого измерительного канала.

Технический результат предлагаемого изобретения следующий.

В предлагаемой конструкции волоконно-оптического уровнемера реализовано дискретное измерение уровня жидкости, что позволяет контролировать несколько значений уровня жидкости.

Предлагаемая новая конструкция волоконно-оптического уровнемера позволяет производить контроль уровня жидкости в требуемых точках емкостей, работоспособна в жестких условиях РКТ, обладает абсолютной искро-, взрыво-, пожаробезопасностью и не требует сложных технологических и измерительных операций при изготовлении.

1. Волоконно-оптический уровнемер, содержащий источники и приемники излучения, подводящие и отводящие оптические волокна, стержни круглого сечения с шаровидными сегментами, обращенными в сторону измеряемой жидкости из оптически прозрачного материала, для которого выполняется условие
nср<nж<n1,
где nср, nж, n1 - показатели преломления окружающей среды, жидкости и стержней соответственно,
отличающийся тем, что радиус стержней определяется выражением
dов≤R≤1,5dов,
где dов - диаметр оболочки оптического волокна, к каждому стержню подходит по одному подводящему и одному отводящему волокну, в конструкцию введены труба, длиною не менее максимального значения измеряемого уровня жидкости со сквозными отверстиями на боковой поверхности, жестко закрепленные на трубе Г-образные корпуса, состоящие из неподвижно соединенных между собой полых трубок, втулок со сквозным внутренним отверстием, наконечников в виде конуса с цилиндрическим сквозным отверстием, в которых закреплены стержни, внешние контуры частей корпуса в местах их соединений одинаковые, причем отверстия в верхней части полой трубки совмещены с отверстиями в трубе, а в отверстиях наконечников закреплены стержни, все оптические волокна проходят внутри трубы и через отверстия в трубе подводятся к стержням, причем количество отверстий, Г-образных корпусов, стержней соответствует количеству точек съема информации об уровне жидкости.

2. Способ изготовления волоконно-оптического уровнемера по п.1, отличающийся тем, что:
1) нарезают оптические волокна в количестве 2n, где n - количество контролируемых точек уровня жидкости, причем длина Li двух отдельных i-x волокон определяется соотношениями:
а) когда точки контроля уровня жидкости равноудалены:
Li≥L+[Н-(i-1)Δi],
б) когда точки контроля уровня жидкости распределены по длине емкости неравномерно:

где L - длина участка от источника или приемника излучения до емкости;
Н - высота емкости (или расстояние от верхней границы емкости до последней точки съема информации);
Δi - расстояние между ближайшими точками съема информации, i=1, 2,…,
n - порядковый номер точки;
2) торцы оптических волокон полируют;
3) оптические волокна соединяют в два жгута таким образом, чтобы все подводящие оптические волокна находились в первом жгуте, а все отводящие оптические волокна - во втором жгуте;
4) первый и второй жгуты объединяют в общий жгут таким образом, чтобы с одного конца все торцы волокон находились в одной плоскости, а с другого конца находились в свободном состоянии на расстоянии
li≥la+lbi,
где lа, lb - длины верхней и нижней частей корпуса соответственно;
5) протягивают общий жгут через трубу таким образом, чтобы нижние концы самых длинных оптических волокон выступали за торец трубы на длину (lii);
6) через отверстия в трубе, начиная с самого нижнего и перемещаясь вверх по трубе, протягивают свободные концы одного подводящего оптического волокна и одного отводящего оптического волокна последовательно, начиная с самых длинных,
дальнейшие действия по 7)-10) последовательно осуществляются для каждого корпуса;
7) пропускают оптические волокна через полые трубки корпусов и вклеивают их с помощью клеящего состава во втулки таким образом, чтобы рабочие торцы оптических волокон были расположены в плоскости поверхности втулок, обращенных к наконечнику;
8) вклеивают стержни в наконечники таким образом, чтобы сферические сегменты располагались с узкой стороны конуса;
9) наконечниками прижимают втулки к нижнему торцу полых трубок корпусов и в местах их соединений сваривают;
10) верхние части корпусов соединяют с помощью сварки с трубой;
11) заглушкой закрывают с нижнего конца трубу и закрепляют с помощью сварки;
12) свободные торцы подводящих оптических волокон подводят к источникам излучения, а отводящих оптических волокон - к приемникам излучения.



 

Похожие патенты:

Изобретение относится к термометрии и предназначено для измерения температуры контактным способом одновременно в группе местоположений, по которым может быть проложен измерительный шнур термометрической косы.

Изобретение относится к способу контроля целости продуктов в емкостях, в частности продуктов питания. .

Изобретение относится к области электротермии, а именно к контролю технологических параметров при производстве плавленых фосфатов, карбида кальция в рудно-термических печах и может быть использовано в цветной металлургии.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для измерения (контроля) высоты уровня жидкости в резервуарах. .

Изобретение относится к способу установления целостности продукта, находящегося в емкости, причем определяется заданный признак продукта в емкости с помощью первого метода измерения, который основывается на первом физическом свойстве продукта.

Изобретение относится к измерителям уровня жидкости для жестких вертикальных резервуаров, в частности к уровнемерам жидкости с применением поплавков, и может быть использовано в нефтяной и химической промышленности преимущественно для контроля за уровнем жидкостей, хранящихся в любых вертикальных резервуарах, имеющих горизонтальные днища.

Изобретение относится к контрольно-измерительной технике и может быть использовано для сигнализации наличия или отсутствия в зоне измерения прозрачной для инфракрасного излучения жидкости с коэффициентом преломления n>1,25, в условиях изменения температуры окружающей среды в диапазоне -100...+150°С на изделиях ракетно-космической техники (РКТ).
Изобретение относится к измерительной технике, в частности к способам и устройствам для контроля уровня жидкости в резервуарах, например на автозаправочных станциях, и может быть использовано в нефтяной, топливной, химической и других отраслях промышленности.

Изобретение относится к технике измерения высоты столба жидкости в емкостях, заполненных специфическими жидкостями, например сточными водами. .

Изобретение относится к измерителю уровня в резервуаре с жидкостью и может быть использовано в корпусе ядерного реактора ядерной установки

Изобретение относится к способу контроля уровня жидкости (F) в резервуаре, в частности контроля уровня теплоносителя в напорном корпусе (4) реактора атомной установки, охлаждаемой водой под давлением

Изобретение относится к области электротермии, а именно к контролю технологических параметров при производстве плавленых фосфатов, карбида кальция в рудно-термических печах, и может быть использовано в цветной металлургии

Изобретение относится к стержневидному электрическому нагревательному элементу, в частности для применения в устройстве для измерения уровня заполнения в резервуаре для жидкости, в частности в корпусе реактора ядерной установки, содержащему оболочку и по меньшей мере один встроенный в нее электрический проводник, который находится в проводящем контакте с оболочкой (16)

Изобретение относится к измерительной технике и может быть использовано в различных отраслях промышленности для определения уровня широкого класса сред, являющихся диэлектриками, проводниками или несовершенными диэлектриками. Радиочастотный датчик уровня с U-образным чувствительным элементом содержит электронный блок и подключенный к нему чувствительный элемент, выполненный в виде отрезка длинной линии. При этом чувствительный элемент выполнен в U-образной форме из двух последовательно соединенных отрезков длинной линии, один из которых является короткозамкнутым и имеет длину, равную максимальному значению измеряемого уровня, а другой отрезок длинной линии является разомкнутым и к его свободному концу подключен линеаризующий конденсатор. При этом значения емкости линеаризующего конденсатора и длины разомкнутого отрезка длинной линии определяются из формул С lo+С e (h-h m )=1,3349εh m C e+0,0161εh m-1,0729h m C e+0,009εC e-0,0092ε-0,0295C e+0,0246 и h m ≤ h ≤ C l m C e + h m , где C lo - значение емкости линеаризующего конденсатора; C lm - значение емкости линеаризующего конденсатора при h=h m; С е - погонная емкость используемой длинной линии; h - длина разомкнутого отрезка длинной линии; h m - максимальное значение измеряемого уровня; ε - относительная диэлектрическая проницаемость контролируемой среды. Технический результат - уменьшение погрешности измерения, обусловленной нелинейностью функции преобразования, а также упрощение и удешевление его реализации. 5 ил.

Изобретение относится к устройству измерения уровня заполнения в резервуаре для жидкости, в частности в напорном резервуаре ядерной технической установки, содержащему по меньшей мере один термоэлемент. Устройство содержит выполненный по типу кабеля с минеральной изоляцией термоэлемент (8), при этом термоэлемент (8) по меньшей мере частично расположен в выходящей из резервуара для жидкости напорной трубе (10). В устройстве предусмотрена спаянная на частичном участке с термоэлементом (8) трубчатая гильза (26), которая окружает термоэлемент (8), предусмотрено действующее в качестве барьера давления уплотнительное устройство (2). Уплотнительное устройство (2) имеет соединительный элемент (31) с окружающей трубчатую гильзу (26) и опирающейся на трубчатую гильзу (26) средней частью, а также выступающий по сторонам, охватывающий напорную трубу (10) соединительный участок (32) на стороне высокого давления. Расположенный на стороне высокого давления соединительный участок (32) соединен через свинчиваемое соединение (36) с напорной трубой (10), и напорная труба (10) за счет кольцевого зазора (42) расположена на расстоянии от трубчатой гильзы (26) и термоэлемента (8). Технический результат - обеспечение надежности указания уровня заполнения. 9 з.п. ф-лы, 2 ил.

Изобретение относится к авиаприборостроению и может быть использовано для управления заправкой самолета топливом на земле, измерения массового запаса топлива на самолете в полете, управления поперечной центровкой самолета по топливу и формирования сигнала о резервном остатке топлива. Система содержит установленные в топливных баках самолета датчики параметров топлива: уровня и температуры, а также сигнализаторы верхнего и нижнего уровней топлива, бортовой вычислитель с левым и правым модулями управления, контрольными каналами и ячейками памяти о геометрии топливных баков, левые и правые модули топливомера, устройство сравнения, устройство балансировки, пульт управления с задатчиком плотности топлива, устройством заправки и индикатором, причем датчики температуры топлива установлены на высоте сигнализаторов нижнего уровня топлива. Бортовой вычислитель предложенной системы снабжен входами для получения вспомогательной информации от датчиков расхода топлива и сигнализатора положения шасси самолета. Техническим результатом изобретения является повышение точности, достоверности и эффективности измерения массового запаса топлива, резервного остатка топлива и управления центровкой самолета по топливу как в штатном, так и в нештатном режимах работы системы. 1 ил.

Изобретение относится к авиаприборостроению и может быть использовано для управления заправкой самолета топливом на земле, измерения массового запаса топлива на самолете в полете, управления поперечной центровкой самолета по топливу и формирования сигнала о резервном остатке топлива. Система содержит установленные в топливных баках самолета датчики параметров топлива: уровня и температуры, а также сигнализаторы нижнего уровня топлива, бортовой вычислитель с левым и правым модулями управления, контрольными каналами и ячейками памяти о геометрии топливных баков, левые и правые модули топливомера, устройство сравнения, устройство балансировки, пульт управления с задатчиком плотности топлива, устройством заправки и индикатором, причем датчики температуры топлива установлены на высоте сигнализаторов нижнего уровня топлива. Бортовой вычислитель снабжен входами для получения вспомогательной информации от датчиков расхода топлива и датчика углов крена и тангажа самолета. Техническим результатом изобретения является повышение точности, достоверности и эффективности измерения массового запаса топлива, резервного остатка топлива и управления центровкой самолета по топливу как в штатном, так и в нештатном режимах работы предложенной системы. 1 ил.

Изобретение относится к авиаприборостроению и может быть использовано для управления заправкой самолета топливом на земле, измерения массового запаса топлива на самолете в полете, управления поперечной центровкой самолета по топливу и формирования сигнала о резервном остатке топлива. Система содержит установленные в топливных баках самолета датчики параметров топлива: уровня и температуры, а также сигнализаторы нижнего уровня топлива, бортовой вычислитель с левым и правым модулями управления, контрольными каналами и ячейками памяти о геометрии топливных баков, левые и правые модули топливомера, устройство сравнения, устройство балансировки, пульт управления с задатчиком плотности топлива, устройством заправки и индикатором, причем датчики температуры топлива установлены на высоте сигнализаторов нижнего уровня топлива. Бортовой вычислитель предложенной системы снабжен входом для получения вспомогательной информации от сигнализатора положения шасси самолета. Техническим результатом изобретения является повышение точности, достоверности и эффективности измерения массового запаса топлива, резервного остатка топлива и управления центровкой самолета по топливу как в штатном, так и в нештатном режимах работы системы. 1 ил.
Наверх