Способ определения времени обучения оценке времени инерционности зрительной системы человека

Изобретение относится к медицине и предназначено для определения времени обучения оценке времени инерционности зрительной системы человека. Испытуемому предъявляют пары световых импульсов, эталонного, длительностью 80 мс, и регулируемого по длительности, повторяющихся через временной интервал, равный 1 с, регулируемый по длительности импульс задерживают или оканчивают ранее относительно времени предъявления эталонного. На первом этапе измерений время задержки или раннего окончания регулируемого по длительности импульса относительно эталонного увеличивают дискретно с шагом 5 мс, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются не одновременно. На втором этапе измерений время задержки или раннего окончания регулируемого по длительности импульса уменьшают дискретно с шагом 3 мс, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются одновременно. На третьем этапе измерений время задержки или раннего окончания увеличивают дискретно с шагом 1 мс, пока испытуемый не определит момент субъективного ощущения, что световые импульсы оканчиваются не одновременно. Время инерционности зрительной системы принимают равным значению времени задержки или времени раннего окончания регулируемого по длительности светового импульса относительно эталонного, определенного на третьем этапе, и отмечают точкой на плоскости в координатах «время инерционности - номер измерения». Описанную процедуру неоднократно повторяют. Строят график зависимости значений времени инерционности от номера измерения до получения квазистационарного режима, когда переходной процесс закончен. Время обучения определяют по числу измерений, выполненных во время переходного процесса. Способ позволяет учесть индивидуальный характер стабилизации измеряемых значений времени инерционности зрительной системы человека. 7 ил.

 

Изобретение относится к медицине и предназначено для определения времени обучения оценке времени инерционности зрительной системы человека.

Условием точности оценки времени инерционности зрительной системы человека является получение ее значений с малой вариабельностью. Однако в результате адаптации испытуемого к экспериментальным условиям, наличием «этапа врабатывания» [1] и влияния «закона научения», согласно которому процесс формирования навыка развивается по экспоненте [2], присутствует переходной процесс. По окончании переходного процесса наступает квазистационарный режим, в котором наблюдается вариабельность значений времени инерционности зрительной системы человека, обусловленная стохастичностью центральной нервной системы как сложного биологического объекта. Длительность переходного процесса определяется временем обучения оценке времени инерционности зрительной системы человека.

По мнению Н.М.Пейсахова и соавт., стабилизация значений происходит после двух-трех измерений [3]. Однако переходной процесс сугубо индивидуален, поэтому необходимое число измерений времени инерционности зрительной системы человека до стабилизации его значений для разных испытуемых различно, что подтверждено экспериментально.

Известен способ определения времени инерции зрения с использованием маятника и контрастных фильтров [4]. По данному способу измеряют пороговый контраст ε для заданного объекта при стационарном наблюдении, затем при разных контрастах Кп, создаваемых заданным набором фильтров, доводят эффективный контраст Кэ до порога видимости подбором времени экспозиции τ, задаваемым амплитудой качания маятника. За время инерции принимается эффективное время сохранения зрительного впечатления, которое при времени экспозиции τ<0,01 с определяется по формуле:

θ=Кпτ/ε.

Недостатком способа является использование механического принципа задания времени экспозиции, что снижает точность определения времени инерции.

Известны исследования инерционности зрительной системы человека с использованием электроретинографии и зрительных вызванных корковых потенциалов [5, 6, 7, 8].

Общим недостатком способов является сложность проведения исследований, необходимость использования специального оборудования, долгий подготовительный период перед исследованиями.

Наиболее близким по технической сущности к предлагаемому способу является способ определения времени инерционности зрительной системы человека, заключающийся в том, что испытуемому предъявляют пары световых импульсов, эталонного, длительностью 80 мс, и регулируемого по длительности, повторяющихся через временной интервал, равный 1 с, регулируемый по длительности импульс задерживают или оканчивают раньше относительно времени предъявления эталонного, причем на первом этапе измерений время задержки или раннего окончания регулируемого по длительности импульса относительно эталонного увеличивают дискретно с шагом 5 мс, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются не одновременно, на втором этапе измерений время задержки или раннего окончания регулируемого по длительности импульса уменьшают дискретно с шагом 1 мс, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются одновременно, на третьем этапе измерений время задержки или раннего окончания регулируемого по длительности импульса увеличивают дискретно с шагом 0,1 мс, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются не одновременно, время инерционности зрительной системы принимают равным значению времени задержки или времени раннего окончания регулируемого по длительности светового импульса относительно эталонного, определенного на третьем этапе измерений [9].

Недостатком способа является то, что он не учитывает индивидуальный характер стабилизации измеряемых значений, что не позволяет определить время обучения оценке времени инерционности зрительной системы человека.

Технический результат предлагаемого способа заключается в определении времени обучения оценке времени инерционности зрительной системы человека.

Технический результат достигается тем, что испытуемому предъявляют пары световых импульсов, эталонного, длительностью 80 мс, и регулируемого по длительности, повторяющихся через временной интервал, равный 1 с, регулируемый по длительности импульс задерживают или оканчивают раньше относительно времени предъявления эталонного, причем на первом этапе измерений время задержки или раннего окончания регулируемого по длительности импульса относительно эталонного увеличивают дискретно с шагом 5 мс, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются не одновременно, на втором этапе измерений время задержки или раннего окончания регулируемого по длительности импульса уменьшают дискретно с заданным шагом, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются одновременно, на третьем этапе измерений время задержки или раннего окончания регулируемого по длительности импульса увеличивают дискретно с заданным шагом, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются не одновременно, время инерционности зрительной системы принимают равным значению времени задержки или времени раннего окончания регулируемого по длительности светового импульса относительно эталонного, определенное на третьем этапе измерений, причем новым является то, что шаг уменьшения времени задержки или раннего окончания регулируемого по длительности импульса относительно эталонного на втором этапе измерений равен 3 мс, шаг увеличения времени задержки или раннего окончания регулируемого по длительности импульса относительно эталонного на третьем этапе измерений равен 1 мс, время инерционности зрительной системы человека отмечают на плоскости в координатах «время инерционности - номер измерения», описанную процедуру неоднократно повторяют, строят график зависимости значений времени инерционности зрительной системы человека tин как функции tин=f(Ni), где Ni - номер i-ого измерения, i=1, 2, …, k, k - число измерений, до получения квазистационарного режима, когда переходной процесс закончен, время обучения определяют по числу измерений, выполненных во время переходного процесса.

Время переходного процесса определяется временем, после которого имеет место неравенство [10]:

|tин i-tин 0|≤Δ/2,

где tин i - значение времени инерционности зрительной системы человека в i-ом измерении, i=1, 2, …, k, k - число измерений; tин 0 - среднее значение времени инерционности зрительной системы человека в квазистационарном режиме; Δ=(tин max-tин min) - вариационный размах значений времени инерционности зрительной системы человека в квазистационарном режиме; tин max - максимальное значение времени инерционности зрительной системы человека в квазистационарном режиме; tин min - минимальное значение времени инерционности зрительной системы человека в квазистационарном режиме.

На фиг.1 представлены временные диаграммы последовательностей пар предъявляемых световых импульсов, повторяющихся через временной интервал Т, равный 1 с, где фиг.1a - временная диаграмма последовательности эталонных световых импульсов длительностью tимп=80 мс; фиг.1б - временная диаграмма последовательности регулируемых по длительности световых импульсов с начальной длительностью tимп=80 мс.

На фиг.2 представлена временная диаграмма изменения времени задержки или времени раннего окончания регулируемого по длительности светового импульса относительно времени предъявления эталонного.

На фиг.3 представлены временные диаграммы последовательностей пар предъявляемых световых импульсов, повторяющихся через временной интервал Т, равный 1 с, где фиг.3а - временная диаграмма последовательности эталонных световых импульсов длительностью tимп=80 мс; фиг.3б - временная диаграмма последовательности регулируемых по длительности световых импульсов, задержанных относительно эталонных на время tзад, вызывающее ощущение того, что предъявляемые импульсы начинаются одновременно; фиг.3в - временная диаграмма последовательности регулируемых по длительности световых импульсов, задержанных относительно эталонных на пороговое время tзад. пор, вызывающее ощущение того, что предъявляемые импульсы начинаются не одновременно; фиг.3г - временная диаграмма последовательности регулируемых по длительности световых импульсов, оканчивающихся ранее относительно эталонного на время tок, вызывающее ощущение того, что предъявляемые импульсы оканчиваются одновременно; фиг.3д - временная диаграмма последовательности регулируемых по длительности световых импульсов, оканчивающихся ранее относительно эталонного на пороговое время tок. пор, вызывающее ощущение того, что предъявляемые импульсы оканчиваются не одновременно.

На фиг.4-7 представлены графики значений времени инерционности зрительной системы четырех испытуемых, полученных в процессе измерения.

Предлагаемый способ определения времени обучения оценке времени инерционности зрительной системы человека осуществляется следующим образом.

Испытуемому предъявляют пары световых импульсов, эталонного, длительностью tимп=80 мс (фиг.1а), и регулируемого по длительности с начальной длительностью tимп=80 мс (фиг.1б), повторяющихся через временной интервал Т, равный 1 с.

На первом этапе измерений время задержки или раннего окончания регулируемого по длительности импульса относительно эталонного увеличивают дискретно с шагом 5 мс, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются не одновременно (фиг.2, интервал времени T0-T1).

На втором этапе измерений время задержки или раннего окончания регулируемого по длительности импульса уменьшают дискретно с шагом 3 мс, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются одновременно (фиг.2, интервал времени T12).

На третьем этапе измерений время задержки или раннего окончания регулируемого по длительности импульса увеличивают дискретно с шагом 1 мс, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются не одновременно (фиг.2, интервал времени Т23).

Время задержки предъявления или время раннего окончания регулируемого по длительности импульса относительно времени предъявления эталонного импульса, определенное на последнем этапе, фиксируют (фиг.2, момент времени Т4) и принимают равным времени инерционности зрительной системы человека, которое отмечают на плоскости в координатах «время инерционности - номер измерения».

Описанную процедуру неоднократно повторяют, строят график зависимости значений времени инерционности зрительной системы человека tин как функции tин=f(Ni), где Ni - номер i-ого измерения, i=1, 2, …, k, k - число измерений, до получения квазистационарного режима, когда переходной процесс закончен. Время обучения определяют по числу измерений, выполненных во время переходного процесса.

Под инерционностью зрения понимают продленность зрительного ощущения после выключения стимула [11]. Во время ответов на световые стимулы появляется вначале рецептивное поле нейрона небольшого размера. Затем рецептивное поле расширяется, после чего ослабляется, фрагментируется и исчезает. После исчезновения рецептивного поля нейронные структуры приходят в исходное состояние и становятся готовыми к восприятию нового стимула. Так как появление рецептивного поля происходит через 20-80 мс после включения светового стимула [12], длительность эталонного импульса принята равной 80 мс.

Зрительное восприятие светового импульса затрудняется в условиях обратной маскировки, заключающейся в ухудшении восприятия первого по времени светового импульса вследствие предъявления второго импульса в непосредственной пространственно-временной близости с первым. Показано существование не только эффекта обратной, но и прямой маскировки, при которой первый световой импульс влияет на качество восприятия второго [13]. При межимпульсном интервале, более 500 мс, эффекты маскировки отсутствуют или слабо выражены [14]. Для устранения эффекта маскировки последовательность пар световых импульсов повторяется через постоянный временной интервал 1 с.

При задержке предъявления регулируемого по длительности импульса относительно времени предъявления эталонного импульса на время tзад<tзад. пор испытуемый субъективно ощущает, что световые импульсы начинаются одновременно (фиг.3б), при задержке на время tзад>tзад. пор - не одновременно (фиг.3в).

При раннем окончании регулируемого по длительности импульса относительно времени предъявления эталонного импульса на время tок<toк. пор испытуемый субъективно ощущает, что световые импульсы оканчиваются одновременно (фиг.3г), при задержке на время tок≥toк. пор - не одновременно (фиг.3д).

Заявляемый способ позволяет учесть индивидуальный характер стабилизации измеряемых значений, что позволяет определить время обучения оценке времени инерционности зрительной системы человека.

Таким образом, заявляемый способ определения времени обучения оценке времени инерционности зрительной системы человека обладает новыми свойствами, обусловливающими получение положительного эффекта.

Пример 1.

Испытуемому Л., 22 года, с помощью персонального компьютера, выдающего через порт LPT на индикаторы пульта испытуемого импульсы, предъявили начальную последовательность пар световых импульсов, эталонного, длительностью tимп=80 мс (фиг.1а) и регулируемого по длительности с начальной длительностью tимп=80 мс (фиг.1б), повторяющихся через временной интервал Т, равный 1 с.

В процессе измерений через порт LPT на персональный компьютер с пульта испытуемого подавались сигналы с кнопок «Увеличение времени задержки на 5 мс», «Уменьшение времени задержки на 3 мс», «Увеличение времени задержки на 1 мс» и «Измерение».

При поступлении сигнала с кнопки «Увеличение времени задержки на 5 мс» компьютер увеличивал время задержки предъявления регулируемого по длительности импульса относительно эталонного импульса на 5 мс, при поступлении сигнала с кнопки «Уменьшение времени задержки на 3 мс» - уменьшал время задержки на 3 мс, при поступлении сигнала с кнопки «Увеличение времени задержки на 1 мс» - увеличивал время задержки на 1 мс. При снятии сигнала с кнопок компьютер сохранял на выходе последовательность пар световых импульсов с последним предъявленным временем задержки регулируемого по длительности импульса относительно эталонного. При поступлении сигнала с кнопки «Измерение» компьютер фиксировал последнее предъявленное время задержки регулируемого по длительности импульса относительно эталонного, принимаемое за время инерционности зрительной системы, заносил его в архив, строил график зависимости значений времени инерционности зрительной системы человека tин как функции tин=f(Ni), где Ni - номер i-ого измерения, i=1, 2, …, k, k - число измерений, после чего предъявлял испытуемому начальную последовательность световых импульсов.

На первом этапе испытуемый, подавая сигнал с кнопки «Увеличение времени задержки на 5 мс», определил момент субъективного ощущения, что световые импульсы начинаются не одновременно (фиг.2, интервал времени T0-T1).

На втором этапе испытуемый, подавая сигнал с кнопки «Уменьшение времени задержки на 3 мс», определил момент субъективного ощущения, что световые импульсы начинаются одновременно (фиг.2, интервал времени Т12).

На третьем этапе испытуемый, подавая сигнал с кнопки «Увеличение времени задержки на 1 мс», определил момент субъективного ощущения, что световые импульсы начинаются не одновременно (фиг.2, интервал времени Т23), затем подал сигнал с кнопки «Измерение» (фиг.2, момент времени Т4).

Компьютер зафиксировал пороговое значение времени задержки tзад. пор регулируемого по длительности импульса относительно эталонного, принимаемое за время инерционности зрительной системы, занес его в архив, отметил на плоскости в координатах «время инерционности - номер измерения» и выдал на индикатор пульта испытуемого начальную последовательность световых импульсов.

Испытуемый повторил описанную процедуру до получения квазистационарного режима, когда переходной процесс закончен. В результате измерений получены следующие значения времени инерционности зрительной системы человека в мс: 25; 24; 23; 20; 21; 19; 21; 20; 21; 19, которые представлены в виде графика на фиг.4. По графику определили номер измерения 4, соответствующий окончанию переходного процесса. Время обучения определили по числу измерений, равному 4, выполненных во время переходного процесса.

Пример 2.

Испытуемый А., 19 лет, аналогично испытуемому Л., выполнил серию измерений времени инерционности зрительной системы человека, в результате получены следующие ее значения в мс: 27; 25; 24; 22; 22; 21; 20; 18; 20; 18; 19; 20; 19, которые представлены в виде графика на фиг.5. По графику определили номер измерения 7, соответствующий окончанию переходного процесса. Время обучения определили по числу измерений, равному 7, выполненных во время переходного процесса.

Пример 3.

Испытуемому В., 25 лет, с помощью персонального компьютера, выдающего через порт LPT на индикаторы пульта испытуемого импульсы, предъявили начальную последовательность пар световых импульсов, эталонного, длительностью tимп=80 мс (фиг.1а) и регулируемого по длительности с начальной длительностью tимп=80 мс (фиг.1б), повторяющихся через временной интервал Т, равный 1 с.

В процессе измерений через порт LPT на персональный компьютер с пульта испытуемого подавались сигналы с кнопок «Увеличение времени раннего окончания на 5 мс», «Уменьшение времени раннего окончания на 3 мс», «Увеличение времени раннего окончания на 1 мс» и «Измерение».

При поступлении сигнала с кнопки «Увеличение времени раннего окончания на 5 мс» компьютер увеличивал время раннего окончания регулируемого по длительности импульса относительно эталонного импульса на 5 мс, при поступлении сигнала с кнопки «Уменьшение времени раннего окончания на 3 мс» - уменьшал время раннего окончания на 3 мс, при поступлении сигнала с кнопки «Увеличение времени раннего окончания на 1 мс» - увеличивал время раннего окончания на 1 мс. При снятии сигнала с кнопок компьютер сохранял на выходе последовательность пар световых импульсов с последним предъявленным временем раннего окончания регулируемого по длительности импульса относительно эталонного. При поступлении сигнала с кнопки «Измерение» компьютер фиксировал последнее предъявленное время раннего окончания регулируемого по длительности импульса относительно эталонного, принимаемое за время инерционности зрительной системы, заносил его в архив, строил график зависимости значений времени инерционности зрительной системы человека tин как функции tин=f(Ni), где Ni - номер i-ого измерения, i=1, 2, …, k, k - число измерений, после чего предъявлял испытуемому начальную последовательность световых импульсов.

На первом этапе испытуемый, подавая сигнал с кнопки «Увеличение времени раннего окончания на 5 мс», определил момент субъективного ощущения, что световые импульсы оканчиваются не одновременно (фиг.2, интервал времени T0-T1).

На втором этапе испытуемый, подавая сигнал с кнопки «Уменьшение времени раннего окончания на 3 мс», определил момент субъективного ощущения, что световые импульсы оканчиваются одновременно (фиг.2, интервал времени T12).

На третьем этапе испытуемый, подавая сигнал с кнопки «Увеличение времени раннего окончания на 1 мс», определил момент субъективного ощущения, что световые импульсы оканчиваются не одновременно (фиг.2, интервал времени Т23), затем подал сигнал с кнопки «Измерение» (фиг.2, момент времени Т4).

Компьютер зафиксировал пороговое значение времени раннего tок. пор окончания регулируемого по длительности импульса относительно эталонного, принимаемое за время инерционности зрительной системы, занес его в архив, отметил на плоскости в координатах «время инерционности - номер измерения» и выдал на индикатор пульта испытуемого начальную последовательность световых импульсов.

Испытуемый повторил описанную процедуру до получения квазистационарного режима, когда переходной процесс закончен. В результате измерений получены следующие значения времени инерционности зрительной системы человека в мс: 21; 20; 18; 19; 17; 16; 15; 17; 16; 17; 15, которые представлены в виде графика на фиг.6. По графику определили номер измерения 5, соответствующий окончанию переходного процесса. Время обучения определили по числу измерений, равному 5, выполненных во время переходного процесса.

Пример 4.

Испытуемый И., 22 года, аналогично испытуемому В., выполнил серию измерений времени инерционности зрительной системы человека, в результате получены следующие ее значения в мс: 21; 20; 19; 19; 20; 19; 18; 16; 17; 15; 16; 16; 17; 17, которые представлены в виде графика на фиг.7. По графику определили номер измерения 8, соответствующий окончанию переходного процесса. Время обучения определили по числу измерений, равному 8, выполненных во время переходного процесса.

Положительный эффект предлагаемого способа определения времени обучения оценке инерционности зрительной системы человека подтвержден результатами экспериментального исследования по группе из 10 испытуемых. Время обучения по группе при задержке предъявления регулируемого импульса относительно эталонного составило от 3 до 7 измерений, а при раннем окончании регулируемого импульса - от 4 до 9 измерений.

Таким образом, предлагаемый способ позволяет определить время обучения оценке инерционности зрительной системы человека по числу измерений, выполненных во время переходного процесса.

Источники информации

1. Ткачук, В.Г. Вариативность физиологических показателей в механизме адаптации биосистем / В.Г.Ткачук, Б.Петрович // VII Междунар. науч. конгресс «Современный олимпийский спорт и спорт для всех»: Матер. конф. - М.: СпортАкадемПресс.- 2003. - Т.2. - С.182-183.

2. Приборы и комплексы для психофизиологических исследований. Исследования, разработка, применение / Под ред. В.А.Викторова, Е.В.Матвеева. - М.: ЗАО "ВНИИМП-ВИТА". - 2002. - 228 с.

3. Методы и портативная аппаратура для исследования индивидуально-психологических различий человека / Н.М.Пейсахов, А.П.Кашин, Г.Г.Баранов, Р.Г.Вагапов; Под ред. В.М.Шадрина. - Казань: Изд-во Казанск. ун-та. - 1976. - 238 с.

4. Луизов, А.В. Глаз и свет / А.В.Луизов. - Л.: Энергия, 1983. - 140 с.

5. Шамшинова, A.M. Функциональные методы исследования в офтальмологии / A.M.Шамшинова, В.В.Волков. - М.: Медицина - 1999. - 416 с.

6. Татко, В.Л. Хронометрия процессов переработки информации человеком // Проблемы современной психофизиологии / Итоги науки и техники. Серия Физиология человека и животных. Том 35. - М.: ВИНИТИ - 1989. - С.3-144.

7. Бетелева, Т.Г. Функциональная специализация полушарий при составлении наличного и предыдущего стимулов / Т.Г.Бетелева // Физиология человека. - 2000. - Т.26, №3. - С.21-30.

8. Нечаев В.Б. Вызванные потенциалы коры больших полушарий при сравнении зрительных стимулов / В.Б.Нечаев, В.А.Ключарев, Ю.Д.Кропотов, В.А.Пономарев // Физиология человека. - 2000. - Т.26, №2. - С.17-23.

9. Патент 2262293 РФ, МПК A61B 3/02. Способ определения времени инерционности зрительной системы человека // Петухов И.В., Лежнин А.В., Роженцов В.В. (РФ). - Опубликовано 20.10.2005, Бюл. №29.

10. Солодовников В.В. Основы теории и элементы систем автоматического регулирования / В.В.Солодовников, В.Н.Плотников, А.В.Яковлев. - М.: Машиностроение. - 1985. - 535 с.

11. Lollo, V.D. Supression of visible persistence / V.D.Lollo, J.H.Hogben // J. Exp.Psychol.: Hum. percept, and Perform. - 1985. - V.11, №3. - P.304-316.

12. Шевелев, И.А. Временная переработка сигналов в зрительной коре / И.А. Шевелев // Физиология человека. - 1997. - Т.23, №2. - С.68-79.

13. Кропотов, Ю.Д. Реакция нейронов и вызванные потенциалы в подкорковых структурах мозга при зрительном опознании. Сообщение IV. Эффект маскировки зрительных стимулов / Ю.Д.Кропотов, В.А.Пономарев // Физиология человека. - 1987. - Т.13, №4. - С.561-566.

14. Тароян, Н.А. Межполушарные функциональные отношения в процессе решения человеком зрительно-пространственной задачи / А.Н.Тароян В.В.Мямлин, О.А.Генкина // Физиология человека. - 1992. - Т.18, №2. - С.5-14.

Способ определения времени обучения оценке времени инерционности зрительной системы человека, заключающийся в том, что испытуемому предъявляют пары световых импульсов, эталонного, длительностью 80 мс, и регулируемого по длительности, повторяющихся через временной интервал, равный 1 с, регулируемый по длительности импульс задерживают или оканчивают раньше относительно времени предъявления эталонного, причем на первом этапе измерений время задержки или раннего окончания регулируемого по длительности импульса относительно эталонного увеличивают дискретно с шагом 5 мс, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются не одновременно, на втором этапе измерений время задержки или раннего окончания регулируемого по длительности импульса уменьшают дискретно с заданным шагом, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются одновременно, на третьем этапе измерений время задержки или раннего окончания регулируемого по длительности импульса увеличивают дискретно с заданным шагом, пока испытуемый не определит момент субъективного ощущения, что световые импульсы начинаются или оканчиваются не одновременно, время инерционности зрительной системы принимают равным значению времени задержки или времени раннего окончания регулируемого по длительности светового импульса относительно эталонного, определенное на третьем этапе измерений, отличающийся тем, что шаг уменьшения времени задержки или раннего окончания регулируемого по длительности импульса относительно эталонного на втором этапе измерений равен 3 мс, шаг увеличения времени задержки или раннего окончания регулируемого по длительности импульса относительно эталонного на третьем этапе измерений равен 1 мс, время инерционности зрительной системы человека отмечают на плоскости в координатах «время инерционности - номер измерения», описанную процедуру неоднократно повторяют, строят график зависимости значений времени инерционности зрительной системы человека 1;ин как функции tин=f(Ni), где Ni - номер i-ого измерения, i=1, 2, …, k, k - число измерений, до получения квазистационарного режима, когда переходной процесс закончен, время обучения определяют по числу измерений, выполненных во время переходного процесса.



 

Похожие патенты:

Изобретение относится к медицине, физиологии, технике и предназначено для обеспечения максимально возможной дальности видимости при изменяющихся неблагоприятных метеоусловиях с учетом особенностей зрения конкретного испытуемого.

Изобретение относится к медицине и к медицинской технике и предназначено для определения времени обучения оценке полосы пропускания рецептивных полей нейронов зрительной системы.

Изобретение относится к медицине и используется в офтальмологии. .

Изобретение относится к экспериментальной медицине, а именно к офтальмологии, и может быть применено для определения стадий проникающих ранений глаз. .

Изобретение относится к медицине и может быть использовано в офтальмологии для диагностики нарушений бинокулярного зрения человека с определением биоритмов зрительных восприятий, выявления ведущего глаза и коррекции нарушений бинокулярного зрения, закрепления бинокулярного зрения, а также для улучшения зрительных функций человека.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для исследования остроты стереоскопического зрения, тренировки глубинного восприятия в различных возрастных группах, а также для диагностики сенсорных нарушений при некоторых заболеваниях центральной нервной системы.

Изобретение относится к медицине. .

Изобретение относится к медицине и медицинской технике. .

Изобретение относится к медицине, а именно к офтальмологии, и предназначено для оценки остроты зрения у детей раннего возраста. .

Изобретение относится к медицине, предназначено для определения времени обучения оценке лабильности зрительной системы человека

Изобретение относится к медицине

Изобретение относится к медицине, а именно к офтальмологии, и предназначено для измерения относительной аккомодации

Изобретение относится к медицине

Изобретение относится к медицине, а именно к офтальмологии

Изобретение относится к области медицины и может быть использовано в психофизиологии для исследования и контроля функционального состояния человека, в космической промышленности для повышения работоспособности космонавтов при длительном пребывании космонавтов на космической станции, а также может быть использовано для восстановления здоровья человека совместно с традиционной терапией

Изобретение относится к медицине, а именно к офтальмологии, и может использоваться в учебном процессе при обучении студентов-медиков, а также для самонаблюдения людьми за состоянием своих глаз

Изобретение относится к медицине и медицинской технике
Изобретение относится к офтальмологии и может быть использовано для диагностики монокулярного оптического неврита как дебюта демиелинизирующего заболевания центральной нервной системы рассеянного склероза
Наверх