Устройство для подогрева высоковязких нефтепродуктов и их смесей

Изобретение относится к устройствам для подогрева высоковязких нефтепродуктов и их смесей, в частности, для подогрева нефтецементной суспензии перед закачкой в скважину. Устройство для подогрева высоковязких нефтепродуктов и их смесей включает цилиндрический корпус с входной и выходной крышками с соответствующими входным и выходным патрубками, расположенные внутри корпуса трубные решетки и распределительные входную и выходную коробки, оснащенные соответственно входной и выходной трубками и сообщенные с концами трубных решеток для прокачки теплоносителя. Корпус расположен вертикально, нижняя - выходная крышка выполнена конусной с выходным патрубком в нижней части, охваченным ниже этой крышки входной распределительной коробкой, которая выполнена с возможностью теплообмена с конусной поверхностью нижней крышки, а верхняя - входная крышка снабжена входным патрубком, установленным соосно с корпусом, при этом трубная решетка выполнена в виде изогнутой внутрь корпуса и сужающейся книзу воронки, внутри которой расположен отбойник, распределяющий поток нефтепродуктов к трубным решеткам и соединенный равномерно по периметру, как минимум, с тремя трубками решетки теплопроводящими пластинами. Такое выполнение устройства надежно в работе, обеспечивает равномерность сопротивления потоку нефтепродуктов. 2 ил.

 

Изобретение относится к устройствам для подогрева высоковязких (густых и труднотекучих плотностью выше 850 кг/м3) нефтепродуктов и их смесей, в частности, для подогрева нефтецементной суспензии перед закачкой их в скважину.

Известно устройство для разогрева вязких нефтепродуктов в емкости (патент РФ №2092418, МПК B65G 69/20, B65D 88/74, опубл. БИ №28 1997 г.), например, в железнодорожной цистерне, содержащее головку, имеющую, по меньшей мере, две пары взаимно направленных сопел, предназначенных для подачи теплоносителя в виде нагретой текучей струи в горизонтальных направлениях, и трубопроводы, предназначенные для соединения головки с источником подачи теплоносителя, причем сопла первой пары расположены под углом к соплам второй пары, которые выполнены с меньшим проходным сечением, чем проходные сечения сопел первой пары.

Недостатками такого устройства являются:

- невозможность разогрева до необходимой температуры (60-80°С) высоковязкого (густого и труднотекучего) нефтепродукта за счет разогретой струи;

- неконтролируемое перемешивание сред высоковязкого нефтепродукта и теплоносителя, что нежелательно, приводит к неравномерной консистенции нагрева нефтепродукта.

Наиболее близким к предлагаемому устройству является теплообменник жесткого типа, имеющий цилиндрический корпус, в котором установлен трубный пучок, закрепленный в трубных решетках, в которых трубки пучка закреплены развальцовкой или сваркой. Корпус аппарата закрыт крышкой и распределительной коробкой. Внутри корпуса установлены перегородки, создающие определенное направление движения потока и увеличивающие скорость в корпусе. Одна из теплообменивающихся сред движется по трубкам, а другая - внутри корпуса между трубками. В трубки пускают более загрязненную среду, а также среду с меньшим коэффициентом теплоотдачи, так как очистка наружной поверхности трубок затруднена, а скорости движения среды в межтрубном пространстве меньше, чем в трубках (Ю.К.Молоканов. Процессы и аппараты нефтегазопереработки. М.: Химия, 1980, с.176, 3-й абзац снизу).

Недостатком известного устройства является его низкая надежность, поскольку температуры теплообменивающихся сред обычно сильно различаются, при этом корпус и трубки пучка получают различные удлинения, что приводит к возникновению дополнительных напряжений в элементах теплообменника, и не учитывается изменение текучести вязких нефтепродуктов в зависимости от температуры, что приводит к дополнительным затратам энергии (следовательно, и материальным затратам) на продавливание вязкой жидкости. При большой разности температур это может привести к деформации и даже разрушению трубок и корпуса, нарушению плотности развальцовки и т.п. Поэтому теплообменники жесткого типа применяют при разности температур обменивающихся сред не более 50°С. (Ю.К.Молоканов. Процессы и аппараты нефтегазопереработки. М.: Химия, 1980, с.176, 1-й абзац снизу).

Техническими задачами предлагаемого изобретения являются создание надежного устройства для подогрева высоковязких (густых и труднотекучих) нефтепродуктов, в частности, для подогрева водяным паром нефтецементной суспензии перед закачкой в скважину, когда разность температур теплообменивающихся закачиваемых в устройство сред значительно превышает 50°С, а также обеспечение равномерности сопротивления потоку нефтепродуктов в зависимости от изменения их текучести при изменении температуры.

Техническая задача решается устройством для подогрева высоковязких нефтепродуктов и их смесей, включающим цилиндрический корпус с входной и выходной крышками с соответствующими входным и выходным патрубками, расположенные внутри корпуса трубные решетки и распределительные входную и выходную коробки, оснащенные соответственно входной и выходной трубками и сообщенные с концами трубных решеток для прокачки теплоносителя.

Новым является то, что корпус расположен вертикально, нижняя - выходная крышка выполнена конусной с выходным патрубком в нижней части, охваченным ниже этой крышки входной распределительной коробкой, которая выполнена с возможностью теплообмена с конусной поверхностью нижней крышки, а верхняя - входная крышка снабжена входным патрубком, установленным соосно с корпусом, при этом трубная решетка выполнена в виде изогнутой внутрь корпуса и сужающейся книзу воронки, внутри которой расположен отбойник, распределяющий поток нефтепродуктов к трубным решеткам и соединенный равномерно по периметру как минимум с тремя трубками решетки теплопроводящими пластинами.

На фиг.1 изображена схема устройства в продольном разрезе.

На фиг.2 изображен разрез А-А.

Устройство для подогрева высоковязких нефтепродуктов и их смесей включает цилиндрический корпус 1 (фиг.1) с входной 2 и выходной 3 крышками с соответствующими входным 4 и выходным 5 патрубками, расположенные внутри корпуса 1 трубные решетки 6 и распределительные входную 7 и выходную 8 коробки, оснащенные соответственно входной 9 и выходной 10 трубками и герметично сообщенные с концами трубных решеток 6 для прокачки теплоносителя. Корпус 1 расположен вертикально, нижняя - выходная крышка 3 выполнена конусной с выходным патрубком 5 в нижней части, охваченным ниже этой крышки входной распределительной коробкой 7, которая выполнена с возможностью теплообмена с конусной поверхностью нижней крышки 5. Верхняя - входная крышка 2 снабжена входным парубком 4, установленным соосно с корпусом. Трубная решетка 6 выполнена в виде изогнутой внутрь корпуса 1 и сужающейся книзу воронки, внутри которой расположен отбойник 11 (фиг.2), распределяющий поток нефтепродуктов к трубным решеткам и соединенный равномерно по периметру как минимум с тремя трубками 12 решетки 6 теплопроводящими пластинами 13.

Устройство работает следующим образом.

Во входную распределительную коробку 4 (фиг.1) по входной трубке 9 подают теплоноситель (перегретая жидкость под давлением, тосол или антифриз необходимой плотности температурой 110-120°С), который, проходя снизу вверх по трубкам 12 решетки 6, подается в выходную распределительную коробку 8, откуда он отводится по выходной трубке 10. Вязкие нефтепродукты (нефтецементная суспензия перед закачкой в скважину, битуминозная нефть перед разделением на фракции и т.п. температурой 4-30°С) поступают по входному патрубку 4 через входную крышку 2 в вертикально установленный корпус 1 по центру, где нефтепродукты за счет «эффекта разбухания струи» вязких жидкостей увеличивают свой поперечный диаметр (относительно диаметра входного патрубка 4). При этом струя вязких нефтепродуктов снаружи, взаимодействуя с трубной решеткой 6, разогревается и стекает снаружи трубной решетки 6 на нижнюю крышку 3. Внутренняя часть струй вязких нефтепродуктов, которая не взаимодействует с трубной решеткой 6, после взаимодействия с отбойником 11, направляется им изнутри наружу и, проходя через трубные решетки 6 и перемешиваясь с уже нагретой частью струи, нагревается и также стекает снаружи трубной решетки 6 на нижнюю крышку 3. Нижняя крышка 3 за счет теплообмена с нижней - входной распределительной коробкой 7 дополнительно подогревает нефтепродукты, которые, стекая по ее конусной поверхности и проходя через трубную решетку 6 снаружи внутрь, разогреваются окончательно и отбираются из нижней части нижней крышки по выходному патрубку 5.

Так как отбойник 11 (фиг.2) соединен равномерно по периметру как минимум с тремя трубками 12 решетки 6 теплопроводящими пластинами 13, которые увеличивают площадь теплообмена с нефтепродуктами, взаимодействующими с ними, отбойник располагается в центральной части корпуса 1 соосно с ним, при этом придавая большую жесткость трубной решетке 6. Поскольку поток нефтепродуктов в нижней части корпуса 1 (фиг.1) направлен снаружи вовнутрь, а в верхней части и средней частях корпуса 1 изнутри наружу, то внутри корпуса 1 образуется поток нефтепродуктов, направленный изнутри наружу, сверху вниз и снаружи внутрь, проходя два раза через трубную решетку 6, причем температура потока увеличивается сверху вниз. Так как трубные решетки 6 выполнены в виде изогнутой во внутрь корпуса 1 и сужающейся книзу воронки, то расстояние в верхней части корпуса между трубками 12 значительно больше, чем в нижней части, где температура нефтепродуктов и, следовательно, текучесть значительно выше, что позволяет обеспечить равномерное сопротивление потоку струи нефтепродуктов во всем корпусе 1 в зависимости от их нагрева и исключить дополнительные потери энергии, затрачиваемые на прокачку нефтепродуктов через корпус. При этом изогнутая форма трубок 12 лучше выдерживает перепады температур (даже более 50°С) за счет изменения своей кривизны. Причем нагреваемые от входной распределительной коробки 7 выходная крышка 3 и от трубок 12 решетки 6 через теплопроводящие пластины 13 отбойник 11 исключают налипание на них вязких нефтепродуктов и торможение их потока.

При необходимости длительной автономной работы устройства (более одного месяца) количество подаваемого теплоносителя к количеству подаваемых нефтепродуктов подбирают таким образом, что перепад температур в каждом поперечном сечении корпуса 1 между нефтепродуктами и теплопередающими поверхностями (нижней крышки 3, трубок 12 решетки 6, отбойника с пластинами 13) не превышал 50°С, так как температура нефтепродуктов в устройстве растет сверху вниз, аналогично и температура этих поверхностей снижается вместе с температурой теплоносителя снизу вверх.

Предлагаемое устройство для подогрева высоковязких (густых и труднотекучих) нефтепродуктов надежно в работе, особенно когда разность температур теплообменивающихся закачиваемых в устройство сред значительно превышает 50°С и обеспечивает равномерность сопротивления потоку нефтепродуктов в зависимости от изменения их текучести при изменении температуры за счет использования трубной решетки, выполненной в виде изогнутой внутрь корпуса и сужающейся книзу воронки и отбойника в центральной ее части.

Устройство для подогрева высоковязких нефтепродуктов и их смесей, включающее цилиндрический корпус с входной и выходной крышками с соответствующими входным и выходным патрубками, расположенные внутри корпуса трубные решетки и распределительные входная и выходная коробки, оснащенные соответственно входной и выходной трубками и сообщенные с концами трубных решеток для прокачки теплоносителя, отличающееся тем, что корпус расположен вертикально, нижняя - выходная крышка выполнена конусной с выходным патрубком в нижней части, охваченным ниже этой крышки входной распределительной коробкой, которая выполнена с возможностью теплообмена с конусной поверхностью нижней крышки, а верхняя - входная - крышка снабжена входным патрубком, установленным соосно с корпусом, при этом трубная решетка выполнена в виде изогнутой внутрь корпуса и сужающейся книзу воронки, внутри которой расположен отбойник, распределяющий поток нефтепродуктов к трубным решеткам и соединенный равномерно по периметру как минимум с тремя трубками решетки теплопроводящими пластинами.



 

Похожие патенты:

Изобретение относится к области теплотехники и может быть использовано в качестве теплообменника ядерной энергетической установки, работающей в режиме переменных нагрузок.

Изобретение относится к теплотехнике и может быть использовано при компоновке высокотеплонапряженного теплообменника ядерной энергетической установки. .

Изобретение относится к энергетике и может быть использовано в подогревателях питательной воды тепловых и атомных электростанций. .

Изобретение относится к теплоэнергетике, а именно к устройствам для утилизации тепла отходящих от агрегатов газов, в частности для подогрева воздуха выхлопными продуктами сгорания, поступающими от компрессора газотурбинной установки газоперекачивающего агрегата на компрессорных станциях магистральных газопроводов.

Изобретение относится к теплоэнергетике, а именно к устройствам для утилизации тепла отходящих от агрегатов газов, в частности, для подогрева воздуха выхлопными продуктами сгорания, поступающими от компрессора газотурбинной установки газоперекачивающего агрегата на компрессорных станциях магистральных газопроводов.

Изобретение относится к теплотехнике, преимущественно к транспортным средствам, а именно к устройствам, обеспечивающим комфортные условия в салонах транспортных средств, а также и к устройствам кондиционирования воздуха.

Изобретение относится к теплообменнику, в частности для установок, эксплуатируемых с большими колебаниями нагрузки и/или температуры, например в качестве охладителя охлаждающего воздуха для газовых турбин, содержащему трубы для разделения теплоотдающей среды, в частности воздуха, и теплопоглощающей среды, в частности воды, причем теплообмен происходит противотоком, трубы, служащие проточными каналами для теплопоглощающей среды, расположены извилисто между впускной и выпускной коллекторными трубами, а теплоотдающая среда омывает эти извилистые трубы.

Изобретение относится к теплообменным устройствам, используемым в мембранной технике для термостатирования обрабатываемых сред и продуктов мембранного разделения и в аппаратах спиртового производства для проведения процессов конденсации в системах, содержащих газы.

Изобретение относится к теплообменным устройствам и может быть использовано в климатических установках транспортных средств, а также в других отраслях промышленности.

Изобретение относится к теплотехнике и может быть применено в установках, которые комбинирует теплообмен между жидкостью и средой теплоносителя со статическим смешением жидкости, также касается применения этой установки

Изобретение относится к теплообменному и реакторному оборудованию и может быть использовано в энергетической, химической, нефтехимической отраслях промышленности

Изобретение предназначено для применения в теплотехнике и может быть использовано в теплообменных аппаратах с оребренными трубами. В теплообменном аппарате оребренная теплообменная труба диаметром d выполнена серпантинообразной с внешним диаметром оребрения D и толщиной ребер L1, расположенных на расстоянии L2 друг от друга, при этом амплитуда серпантина A по внешнему диаметру оребрения составляет не менее A = D × ( 2 + 1 L 1 + L 2 L 1 − 1 ) период волны серпантина P не менее P = 2 D × ( 1 + 1 L 1 + L 2 L 1 − 1 ) Технический результат: интенсификация теплообмена за счет турбулизации потока, проходящего внутри оребренных серпантинообразных труб, и увеличение площади теплообмена аппарата. 22 з.п. ф-лы, 8 ил., 2 табл.

Теплообменное устройство содержит элементы в виде спирально навитых труб с чередующимися прямыми и кольцеобразными участками, расположенными напротив друг друга. Элементы внедрены друг в друга кольцеобразными участками. Прямые участки смежных элементов в теплообменном устройстве располагаются с одной стороны, а кольцеобразные - с другой, при этом элементы в поперечном сечении теплообменного устройства расположены вокруг его оси по окружности, с ориентацией кольцеобразных участков на указанную ось. Прямые участки в элементах могут располагаться в разных плоскостях, под углом друг к другу. В этом случае кольца у кольцеобразных участков имеют различные диаметры, наибольшие в середине элементов, и наименьшие на его концевых участках. При совпадении направления навивок у смежных элементов плоскости, прилегающие к внешней стороне кольцеобразных участков, пересекаются под острым углом с осью теплообменного устройства. При взаимно противоположном направлении навивок у смежных элементов упомянутые плоскости и ось параллельны. Достигается значительное уменьшение габаритов теплообменного устройства за счет плотной компоновки смежных элементов в нем, а также возможность размещать его в цилиндрических, кольцевых, торообразных и сферических полостях. 3 з.п. ф-лы, 14 ил.

Изобретение относится к криогенной технике и может быть использовано как в стационарных газификационных установках, так и в газификационной установке на борту воздушного судна. Предложен теплообменник, содержащий: корпус, входные и выходные коллекторы, а трубопровод выполнен перекрестновитым, имеющим форму змеевика вокруг условной центральной оси из трех труб, соединенных между собой П-образным поворотом во входном и выходном коллекторах. Технический результат - увеличение эффективности теплообмена, уменьшение габаритов и металлоемкости теплообменника. 1 ил.

Изобретение относится к энергетике. Устройство для нагрева текучей среды содержит первую горелку, обеспечивающую первое сгорание ограничивающего компонента топлива и избыточного компонента топлива, и первый модуль теплообменника, в котором первые газы сгорания, производимые в указанном первом сгорании, отдают тепло текучей среде. При этом устройство дополнительно содержит вторую горелку, в которую вводят с одной стороны первые газы сгорания, а с другой стороны - ограничивающий компонент топлива, для осуществления второго сгорания ограничивающего компонента топлива и, по меньшей мере, части несгоревшего избыточного компонента топлива, присутствующего в первых газах сгорания. Причём вторые газы сгорания, производимые в указанном втором сгорании, циркулируют во втором модуле теплообменника и также отдают тепло текучей среде. Таким образом, газы сгорания, производимые в каждом из сгораний, циркулируют по трубкам для газов сгорания, внутри одного и того же общего теплообменника, состоящего из указанных модулей теплообменника, в котором они отдают тепло текучей среде. Также представлена ракета-носитель, содержащая устройство для нагрева текучей среды. Изобретение позволяет повысить температуру и давление жидкого компонента топлива перед его впрыском в камеру сгорания. 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к энергетике. Теплообменный змеевик сухого теплообменника с множеством прямых внутренних трубок, соединенных множеством обратных колен. Обратные колена расположены снаружи потока воздуха, проходящего вокруг змеевика. Внутренние трубки расположены внутри соответствующих наружных или «защитных» трубок. Наружные трубки не содержат и не соединены с обратными коленами, но концы наружных трубок расположены снаружи пути потока воздуха. Утечки во внутренних трубках улавливаются наружными трубками, и просачивающаяся жидкость будет течь в пространстве между внутренними и наружными трубками, вытекать из конца наружной трубки, чтобы быть уловленной в каплесборнике на днище кожуха змеевика. Утечки, возникающие в обратных коленах, будут также улавливаться в каплесборнике. Также представлены теплообменник и система охлаждения трансформатора, содержащие теплообменный змеевик. Изобретение позволяет избежать разделения коллекторов теплообменного змеевика на камеры, а также позволяет обеспечить большую гибкость конструкции контура змеевика. 3 н. и 13 з.п. ф-лы, 7 ил.

Изобретение относится к системе охлаждения. Система подводного охлаждения потока в скважине посредством морской воды содержит вход (А) и выход (В), а также по меньшей мере первый охладитель и второй охладитель . Причем первый охладитель и второй охладитель соединены друг с другом последовательно. При этом система охлаждения дополнительно содержит по меньшей мере третий охладитель, соединенный параллельно с первым охладителем и вторым охладителем. Система охлаждения дополнительно содержит по меньшей мере один регулятор потока для направления потока по меньшей мере через один охладитель. При этом по меньшей мере один из охладителей содержит перепускной контур и/или контур рециркуляции. Причем охладители содержат средства контроля температуры и датчики, позволяющие оператору контролировать систему охлаждения и охладители и осуществлять перепуск всего потока или части потока через перепускной контур. Техническим результатом является повышение эффективности охлаждения потока и обеспечение поддержания температуры охлажденного потока в заданном диапазоне значения. 11 з.п. ф-лы, 6 ил.
Наверх