Восемнадцатифазный преобразователь трехфазного напряжения в постоянное



Восемнадцатифазный преобразователь трехфазного напряжения в постоянное
Восемнадцатифазный преобразователь трехфазного напряжения в постоянное
Восемнадцатифазный преобразователь трехфазного напряжения в постоянное
Восемнадцатифазный преобразователь трехфазного напряжения в постоянное
Восемнадцатифазный преобразователь трехфазного напряжения в постоянное
Восемнадцатифазный преобразователь трехфазного напряжения в постоянное
Восемнадцатифазный преобразователь трехфазного напряжения в постоянное

 


Владельцы патента RU 2408970:

Государственное образовательное учреждение высшего профессионального образования Новосибирский государственный технический университет (RU)

Восемнадцатифазный преобразователь трехфазного напряжения в постоянное предназначен для питания потребителей постоянного тока с повышенными требованиями к качеству преобразования при различных уровнях выпрямленного напряжения. Предложенный преобразователь (Фиг.1) содержит 3 симметричных трехфазных источника питания, одноименные напряжения которых последовательно сдвинуты по фазе на 20 эл. град., и 4 последовательно расположенные вентильные группы, крайние из которых содержат по 3 вентиля, соединенных в анодную и катодную вентильные звезды, общие точки которых образуют выходные выводы устройства, а остальные 2 группы представляют собой шестивентильные кольца с тремя парами диаметрально расположенных точек соединения одноименных электродов вентилей, крайние вентильные группы соединены со смежными группами в трех узлах, каждый их которых образован свободным электродом вентиля анодной (катодной) вентильной звезды и свободной точкой соединения электродов вентилей смежного вентильного кольца, образованной электродами другого наименования, смежные вентильные кольца соединены в трех узлах, каждый из которых образован свободной парой точек соединения электродов вентилей смежных колец, при этом в данных узлах электроды вентилей одного смежного кольца имеют одно наименование, а электроды вентилей второго кольца другое, причем к каждому узлу соединения смежных вентильных групп подключена одна из фаз одного из трехфазных источников питания, причем каждая из фаз любого источника питания соединена через вентили колец только с фазами смежных источников питания, имеющими фазовые сдвиги

эл.град. относительно данной фазы, при этом преобразователь снабжен 9 дополнительными вентилями, вентили шестивентильных колец выполнены полностью управляемыми, а остальные неуправляемыми, из шести дополнительных вентилей сформирован трехфазный вентильный мост, выходы постоянного тока которого соединены с одноименными выходными выводами устройства, а к каждому входу переменного тока трехфазного вентильного моста подключена одна из фаз трехфазного источника питания, расположенного между крайними относительно выходных выводов источниками, при этом каждый из трех других дополнительных вентилей соединен свободным катодом с одной из фаз одного крайнего трехфазного источника питания, к которым подключена катодная вентильная звезда, а свободным анодом соединен с фазой другого крайнего трехфазного источника питания, отстающей на эл.град. от фазы источника, к которым данный вентиль присоединен катодом. Предложенный восемнадцатифазный преобразователь трехфазного напряжения в постоянное имеет более широкие функциональные возможности. 7 ил., 2 табл.

 

Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока с повышенными требованиями к качеству преобразования при различных уровнях выпрямленного напряжения.

Известен восемнадцатифазный преобразователь трехфазного напряжения в постоянное, построенный на основе трех последовательно соединенных преобразовательных секций, содержащих трехфазные вентильные мосты, подключенные к автономным источникам симметричных трехфазных систем ЭДС, сдвинутых по фазе последовательно друг относительно друга на угол где m - фазность преобразования (Размадзе Ш.М. Преобразовательные схемы и системы. - М.: Высшая школа, 1967. - С.265).

Такой каскадный преобразователь обеспечивает получение на выходах напряжений трех уровней (при дополнительных выходных выводах от точек соединения каскадов).

Недостатком данного преобразователя является большая мощность потерь в вентилях. В силу того, что восемнадцатифазный преобразователь построен методом последовательного агрегирования трех шестифазных преобразовательных секций с трехфазными вентильными мостами, выходные напряжения от одной преобразовательной секции в данном преобразователе имеют только 6-кратную частоту пульсаций, а в случае использования в качестве выходного напряжения суммы напряжений двух секций форма кривой выпрямленного напряжения будет сильно искажена. Таким образом, качество преобразования при подключении к нагрузке меньшего, чем исходное, числа преобразовательных секций, в частности двух, существенно снижается.

Наиболее близким к изобретению, принятым за прототип, является восемнадцатифазный преобразователь трехфазного напряжения в постоянное (Пат. РФ №2368997. Преобразователь трехфазного напряжения в постоянное / С.А.Евдокимов, Бюл. №27, 2009 г.), содержащий при кратности частоты пульсации выпрямленного напряжения р=18 р/6=3 трехфазных источника питания, одноименные напряжения которых последовательно сдвинуты по фазе на 2π/ρ=20 эл.град., и n=(р/6)+1=4 последовательно расположенных вентильных групп, крайние из которых содержат по три вентиля, соединенных в анодную и катодную вентильные звезды, общие точки которых образуют выходные выводы устройства, а остальные две группы представляют собой шестивентильные кольца с тремя парами диаметрально расположенных точек соединения одноименных электродов вентилей, крайние вентильные группы соединены со смежными группами в трех узлах, каждый их которых образован свободным электродом анодной (катодной) вентильной звезды и свободной точкой соединения электродов вентилей смежного вентильного кольца, образованной электродами другого наименования, смежные вентильные кольца соединены в трех узлах, каждый из которых образован свободной парой точек соединения электродов вентилей смежных колец, при этом в данных узлах электроды вентилей одного смежного кольца имеют одно наименование, а электроды вентилей второго кольца другое, причем к каждому узлу соединения смежных вентильных групп подключена одна из фаз одного из трехфазных источников питания, причем каждая из фаз любого источника питания соединена через вентили колец только с фазами смежных источников питания, имеющими фазовые сдвиги эл. град. относительно данной фазы.

Недостатком данного преобразователя является то, что схемное решение обеспечивает на выходе преобразователя только один уровень выпрямленного напряжения (не принимая во внимание возможность фазового регулирования с помощью управляемых вентилей, приводящего к уменьшению коэффициента мощности, или амплитудное регулирование напряжений источников трехфазных напряжений, требующее сложного построения вторичных обмоток трансформаторов и применяемое, главным образом, в однофазных выпрямителях электровозов переменно-постоянного тока). Таким образом, ограничены функциональные возможности преобразователя.

Задача изобретения - расширение функциональных возможностей преобразователя.

Указанная задача достигается тем, что восемнадцатифазный преобразователь трехфазного напряжения в постоянное содержит три трехфазных источника питания, одноименные напряжения которых последовательно сдвинуты по фазе на 2π/р=20 эл.град., и n=(р/6)+1=4 последовательно расположенные вентильные группы, крайние из которых содержат по три вентиля, соединенных в анодную и катодную вентильные звезды, общие точки которых образуют выходные выводы устройства, соответственно, анодный и катодный, а остальные две группы представляют собой шестивентильные кольца с тремя парами диаметрально расположенных точек соединения одноименных электродов вентилей, крайние вентильные группы соединены со смежными группами в трех узлах, каждый их которых образован свободным электродом анодной (катодной) вентильной звезды и свободной точкой соединения электродов вентилей смежного вентильного кольца, образованной электродами другого наименования, смежные вентильные кольца соединены в трех узлах, каждый из которых образован свободной парой точек соединения электродов вентилей смежных колец, при этом в данных узлах электроды вентилей одного смежного кольца имеют одно наименование, а электроды вентилей второго кольца - другое, причем к каждому узлу соединения смежных вентильных групп подключена одна из фаз одного из трехфазных источников питания, причем каждая из фаз любого источника питания соединена через вентили колец только с фазами смежных источников питания, имеющими фазовые сдвиги эл.град. относительно данной фазы, при этом преобразователь снабжен девятью дополнительными вентилями, вентили шестивентильных колец выполнены полностью управляемыми, а остальные неуправляемыми, из шести дополнительных вентилей сформирован трехфазный вентильный мост, выходы постоянного тока которого соединены с одноименными выходными выводами устройства, а к каждому входу переменного тока трехфазного вентильного моста подключена одна из фаз трехфазного источника питания, расположенного между крайними относительно выходных выводов источниками, при этом каждый из трех других дополнительных вентилей соединен свободным катодом с одной из фаз одного крайнего трехфазного источника питания, к которым подключена катодная вентильная звезда, а свободным анодом - с фазой другого крайнего трехфазного источника питания, отстающей на

эл. град. от фазы источника, к которым данный вентиль присоединен катодом.

На Фиг.1 приведена электрическая схема предлагаемого преобразователя; на Фиг.2 показаны векторные диаграммы напряжений трехфазных источников питания, представленные амплитудно-фазовыми портретами (АФП) трехфазных систем напряжений, изображенными в виде треугольников, и совмещенные группы АФП при формировании результирующих выпрямляемых напряжений от трех источников (трехуровневое включение); на Фиг.3 показаны совмещенные АФП при формировании результирующих выпрямляемых напряжений от двух источников (двухуровневое включение); на Фиг.4 приведены временные диаграммы напряжений источников питания с указанием участков кривых фазных напряжений при формировании результирующих выпрямляемых напряжений от трех источников питания и алгоритм работы управляемых вентилей; на Фиг.5 показана форма выпрямленного напряжения преобразователя при трехуровневом включении; на Фиг.6 приведены временные диаграммы напряжений источников питания с указанием участков кривых фазных напряжений при формировании результирующих выпрямляемых напряжений от двух источников питания и алгоритм работы управляемых вентилей; на Фиг.7 показана форма выпрямленного напряжения преобразователя при двухуровневом включении.

Преобразователь (Фиг.1) содержит симметричные трехфазные источники 1, 2, 3 питания, двадцать семь вентилей 4-30, двенадцать из которых управляемые и образуют два шестивентильных кольца: одно кольцо из вентилей 8, 10, 14, 16, 20, 5 объединенными анодами пар вентилей 8, 5; 10, 14; 16, 20 соединено, соответственно, с фазами a, b, с источника 1, а объединенными катодами пар вентилей 14, 16; 20, 5; 8, 10 соединено, соответственно, с фазами а, b, с источника 2; второе кольцо из вентилей 17, 21, 9, 6, 15, 11 объединенными анодами пар вентилей 9, 6; 15, 11; 17, 21 соединено, соответственно, с фазами а, b, с источника 2, а объединенными катодами пар вентилей 17, 15; 21, 6; 9, 11 соединено, соответственно, с фазами а, b, с источника 3.

Три неуправляемых вентиля 23, 26, 29 анодами подключены, соответственно, к фазам а, b, с источника 1, а катодами подключены, соответственно, к фазам b, с, а источника 3. Три неуправляемых вентиля 13, 19, 4 катодами подключены, соответственно, к фазам а, b, с источника 1, а три неуправляемых вентиля 28, 22, 25 катодами подключены, соответственно, к фазам a, b, с источника 2, при этом аноды вентилей 13, 19, 4, 28, 22, 25 объединены и образуют один выходной вывод 31 устройства. Три неуправляемых вентиля 7, 12, 18 анодами подключены, соответственно, к фазам а, b, с источника 3, а три неуправляемых вентиля 24, 27, 30 анодами подключены, соответственно, к фазам а, b, с источника 2, при этом катоды вентилей 7, 12, 18, 24, 27, 30 объединены и образуют второй выходной вывод 32 устройства. К выходным выводам 31 и 32 устройства подключена нагрузка 33.

Принцип работы устройства (Фиг.1) иллюстрируется векторными диаграммами напряжений, представленными (на Фиг.2 для трехуровневого соединения систем; на Фиг.3 для двухуровневого соединения систем) в виде амплитудно-фазовых портретов напряжений вторичных фазных обмоток, составляющих три симметричные трехфазные системы напряжений источников 1, 2, 3, сдвинутые последовательно по фазе на 20 эл.град., и развернутыми на потенциальной плоскости векторными диаграммами результирующих выпрямляемых напряжений. Из векторных диаграмм видно, что при трехуровневом соединении источников в формировании каждого результирующего выпрямляемого напряжения участвуют линейные напряжения каждой из трех трехфазных систем, а при двухуровневом соединении участвуют линейные напряжения только двух источников, причем каждый из трех источников в этом случае задействован в формировании 12 результирующих напряжений, так как источники циклично сменяют друг друга.

Для организации двух- или трехуровневого соединения систем вентили шестивентильных колец выполнены управляемыми. Последовательность управляемого и естественного включения вентилей при формировании выпрямленного напряжения, соответствующего сумме напряжений трех источников, приведена в таблице 1. Сопоставление алгоритма включения управляемых вентилей с временными диаграммами фазных напряжений источников питания приведено на Фиг.4. Скругленные прямоугольники на временной диаграмме охватывают пары фазных напряжений систем питания, которые участвуют в формировании текущей пульсации. На Фиг.5 приведена кривая выпрямленного напряжения при трехуровневом включении.

Номера управляемых вентилей в таблице отмечены жирным шрифтом. Моменты включения данных вентилей соответствуют началу формирования соответствующей пульсации s.

Таблица 1
s1 4 5 6 7 s7 13 10 11 12 s13 19 16 17 18
s2 4 8 6 7 s8 13 14 11 12 s14 19 20 17 18
s3 4 8 9 7 s9 13 14 15 12 s15 19 20 21 18
s4 4 10 9 7 s10 13 16 15 12 s16 19 5 21 18
s5 4 10 11 7 s11 13 16 17 12 s17 19 5 6 18
s6 4 10 11 12 s12 13 16 17 18 s18 19 5 6 7

Продолжительность включения вентилей 8, 9, 14, 15, 20, 21 соответствует двум длительностям пульсации, т.е. 40 эл.град., а продолжительность включения вентилей 5, 6, 10, 11, 16, 17 соответствует четырем длительностям пульсации, т.е. 80 эл.град.

Последовательность управляемого и естественного включения вентилей устройства при формировании выпрямленного напряжения, соответствующего сумме напряжений двух источников, приведена в таблице 2.

Таблица 2
s1 22 6 7 s7 25 11 12 s13 28 17 18
s2 4 23 7 s8 13 26 12 s14 19 29 18
s3 4 8 24 s9 13 14 27 s15 19 20 30
s4 25 9 7 s10 28 15 12 s16 22 21 18
s5 4 26 7 s11 13 29 12 s17 18 23 18
s6 4 10 27 s12 13 16 30 s18 19 5 24

Номера управляемых вентилей отмечены жирным шрифтом. Моменты включения данных вентилей соответствуют началу формирования соответствующей пульсации s. Продолжительность включения управляемых вентилей соответствует одной длительности пульсации, т.е. 20 эл.град. Сопоставление алгоритма включения управляемых вентилей с временными диаграммами фазных напряжений источников питания приведено на Фиг.6. Скругленные прямоугольники на временной диаграмме охватывают пары фазных напряжений систем ЭДС, которые участвуют в формировании текущей пульсации.

На Фиг.7 приведена кривая выпрямленного напряжения при двухуровневом включении.

В качестве временной привязки выбраны моменты формирования пульсаций при двухуровневом преобразовании, так как начало пульсации s15 при этом совпадает с нулевой фазой напряжения фазы а трехфазной системы напряжений источника 1.

Предложенный преобразователь по сравнению с прототипом позволяет формировать дополнительный уровень выпрямленного напряжения канонической 18-пульсной формы (соответствующий сумме выпрямляемых напряжений двух источников), не прибегая к известным методам фазового или амплитудного регулирования.

Таким образом, предлагаемый восемнадцатифазный преобразователь трехфазного напряжения в постоянное имеет более широкие функциональные возможности.

Кроме того, чередование применяемых алгоритмов включения преобразователя на двух- или трехуровневый режим дает возможность плавного регулирования выпрямленного напряжения между вторым и третьим уровнем.

Восемнадцатифазный преобразователь трехфазного напряжения в постоянное, содержащий три трехфазных источника питания, одноименные напряжения которых последовательно сдвинуты по фазе на 2π/р=20 эл.град., и n=(p/6)+1=4 последовательно расположенные вентильные группы, крайние из которых содержат по три вентиля, соединенных в анодную и катодную вентильные звезды, общие точки которых образуют выходные выводы устройства, соответственно анодный и катодный, а остальные две группы представляют собой шестивентильные кольца с тремя парами диаметрально расположенных точек соединения одноименных электродов вентилей, крайние вентильные группы соединены со смежными группами в трех узлах, каждый их которых образован свободным электродом анодной (катодной) вентильной звезды и свободной точкой соединения электродов вентилей смежного вентильного кольца, образованной электродами другого наименования, смежные вентильные кольца соединены в трех узлах, каждый из которых образован свободной парой точек соединения электродов вентилей смежных колец, при этом в данных узлах электроды вентилей одного смежного кольца имеют одно наименование, а электроды вентилей второго кольца имеют другое наименование, причем к каждому узлу соединения смежных вентильных групп подключена одна из фаз одного из трехфазных источников питания, причем каждая из фаз любого источника питания соединена через вентили колец только с фазами смежных источников питания, имеющими фазовые сдвиги эл. град. относительно данной фазы, отличающийся тем, что он снабжен девятью дополнительными вентилями, вентили шестивентильных колец выполнены полностью управляемыми, а остальные неуправляемыми, из шести дополнительных вентилей сформирован трехфазный вентильный мост, выходы постоянного тока которого соединены с одноименными выходными выводами устройства, а к каждому входу переменного тока трехфазного вентильного моста подключена одна из фаз трехфазного источника питания, расположенного между крайними относительно выходных выводов источниками, при этом каждый из трех других дополнительных вентилей соединен свободным катодом с одной из фаз одного крайнего трехфазного источника питания, к которым подключена катодная вентильная звезда, а свободным анодом соединен с фазой другого крайнего трехфазного источника питания, отстающей на эл. град. от фазы источника, к которым данный вентиль присоединен катодом.



 

Похожие патенты:

Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока с повышенными требованиями к качеству преобразования при различных уровнях выпрямленного напряжения.

Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока с повышенными требованиями к качеству преобразования при различных уровнях выпрямленного напряжения.

Изобретение относится к преобразовательной технике и может быть использовано в установках электролиза алюминия, меди, цинка, хлора, водорода и др., в электротермии, на электрическом транспорте и в других отраслях, применяющих постоянный ток.

Изобретение относится к преобразовательной технике и может быть использовано для бестрансформаторного преобразования трехфазного переменного напряжения в 12-пульсное напряжение, а также трансформаторного преобразования в 12-пульсное или трехфазное переменное напряжение с качественным гармоническим составом.

Изобретение относится к преобразовательной технике и может быть использовано для преобразования трехфазного переменного напряжения в постоянное с периодичностью выпрямления 12N (где N=2, 3, 4, ), а также трехфазное переменное напряжение с качественным гармоническим составом.

Изобретение относится к электротехнике и предназначено для электроподвижного состава переменного тока с плавным регулированием напряжения. .

Изобретение относится к преобразовательной технике и может быть использовано для преобразования трехфазного переменного напряжения в постоянное с постоянным уровнем высших гармоник во всем диапазоне регулирования.

Изобретение относится к преобразовательной технике и может быть использовано для преобразования трехфазного переменного напряжения в постоянное с постоянным уровнем высших гармоник во всем диапазоне регулирования.

Изобретение относится к электротехнике и может быть использовано для управления выпрямителем с емкостным фильтром на выходе при создании электромеханических систем, например при создании электроприводов переменного тока.

Изобретение относится к силовой преобразовательной технике и может быть использовано в системах электропитания постоянным током, для питания электроприводов постоянного тока, в силовых выпрямительных установках, питающихся от источников электрической энергии ограниченной мощности.

Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока с повышенными требованиями к качеству преобразования при различных уровнях выпрямленного напряжения

Изобретение относится к области электротехники и может быть использовано для синхронизации цифровых систем управления вентильными преобразователями в трехфазных управляемых мостовых выпрямителях с микропроцессорной системой управления и широким диапазоном регулирования углов управления силовых полупроводников

Изобретение относится к электротехнике, в частности к полупроводниковой технике, и может быть использовано на электроподвижном составе для регулирования мощности тягового электродвигателя и других потребителей электроэнергии, получающих питание от электрической сети переменного и постоянного тока

Изобретение относится к области преобразовательной техники и может быть использовано на электроподвижном составе

Изобретение относится к устройству для гибкой передачи энергии и для устранения обледенения имеющей несколько фаз высоковольтной линии с помощью постоянного тока, содержащему присоединение переменного тока высоковольтной линии, которое имеет соответствующее фазам высоковольтной линии число фаз, при этом каждая фаза имеет, по меньшей мере, одну индуктивность и одну вентильную схему, включенную последовательно каждой индуктивности, при этом вентильная схема с помощью узловой точки соединена с присоединением переменного тока и имеет первую ветвь цепи тока с первым мощным полупроводниковым вентилем и вторую ветвь цепи тока со вторым мощным полупроводниковым вентилем, при этом мощные полупроводниковые вентили включены противоположно друг другу относительно узловой точки и при этом первая и вторая ветви цепи тока предназначены для соединения с помощью, по меньшей мере, одного переключателя нулевой точки с нулевой точкой TCR

Изобретение относится к реверсивным полупроводниковым транзисторным выпрямительным устройствам

Изобретение относится к преобразовательной технике и может быть использовано для преобразования трехфазного переменного напряжения в постоянное с периодичностью выпрямления 12N (где N=2, 3, 4, ), а также трехфазное переменное напряжение с качественным гармоническим составом

Двадцатичетырехфазный преобразователь трехфазного напряжения в постоянное предназначен для питания потребителей постоянного тока с повышенными требованиями к качеству преобразования при различных уровнях выпрямленного напряжения. Предложенный преобразователь содержит четыре симметричных трехфазных источника питания и пять последовательно расположенных вентильных групп, крайние из которых содержат по три вентиля, соединенных в анодную и катодную вентильные звезды, общие точки которых образуют выходные выводы устройства, а остальные три группы представляют собой шестивентильные кольца с тремя парами диаметрально расположенных точек соединения одноименных электродов вентилей. Смежные вентильные кольца соединены в трех узлах, каждый из которых образован свободной парой точек соединения электродов вентилей смежных колец. Преобразователь снабжен двадцать одним дополнительным вентилем, вентили шестивентильных колец выполнены управляемыми, три дополнительных вентиля также выполнены управляемыми, а остальные - неуправляемыми. Технический результат - более широкие функциональные возможности. 10 ил., 3 табл.

Изобретение относится к области электрифицированного железнодорожного транспорта и предназначено для электровозов переменного тока с плавным регулированием напряжения. Технический результат заключается в снижении энергопотребления двигателя за счет повышения среднего значения выпрямленного напряжения на выходе выпрямительно-инверторного преобразователя благодаря формированию в режиме тяги на каждой зоне регулирования нулевых значений выпрямленного напряжения на протяжении времени от 0 до α0. Для этого заявленное устройство содержит тяговый трансформатор с тремя секциями вторичной обмотки, выпрямительно-инверторный преобразователь с восемью плечами из последовательно соединенных тиристора и диода, образующими мостовую схему, нагрузку из последовательно соединенных двигателя и индуктивного сопротивления, нулевой тиристор, подключенный параллельно нагрузке, и связанный с ним блок управления нулевым тиристором, подключенный к первой секции вторичной обмотки трансформатора и содержащий соединенные между собой датчик напряжения, выпрямитель, формирователь синхроимпульсов, генератор тактовых импульсов, компаратор, одновибратор, переключатель в режим тяги - рекуперации и элемент «И». 2 ил

Изобретение относится к области электротехники и может быть использовано на электроподвижном составе, получающем питание от контактной сети однофазного переменного тока. Технический результат заключается в повышении коэффициента мощности инвертора. В способе управления зависимым инвертором однофазного переменного тока при указанном в материалах заявки управлении вентилями анодной и катодной групп моста зависимого инвертора в первом и втором полупериодах импульсов управления с регулируемы углом βрег и нерегулируемым углом β в соответствующих зонах регулирования дополнительно подают на всех зонах регулирования, кроме первой, в первом полупериоде напряжения импульсов управления с нерегулируемым углом β на управляемый вентиль катодной группы средней цепочки предыдущей зоны, а во втором полупериоде - на управляемый вентиль анодной группы средней цепочки предыдущей зоны. Импульсы управления с нерегулируемым углом β, подаваемые в каждом полупериоде на одну соответствующую пару управляемых вентилей крайних цепочек соответствующих зон, подают с задержкой по времени относительно нерегулируемого угла β на величину угла отпирания γ1 соответствующего управляемого вентиля средней цепочки предыдущей зоны. 4 ил.
Наверх