Универсальный аэрогидродинамический насадок



Универсальный аэрогидродинамический насадок
Универсальный аэрогидродинамический насадок
Универсальный аэрогидродинамический насадок
Универсальный аэрогидродинамический насадок
Универсальный аэрогидродинамический насадок

 


Владельцы патента RU 2411088:

Государственное учреждение Научно-исследовательский институт механики Московского государственного университета имени М.В. Ломоносова (RU)

Устройство может быть использовано в промышленности (форсунки печей, двигателей внутреннего сгорания, камер сгорания, форсунки многофазных химических реакторов, аэраторы для насыщения воды воздухом в рыбных питомниках и рыбоводческих хозяйствах, аэраторы в системах флотации и биологической очистки воды) и в здравоохранении (очистка воздуха от пыли, его увлажнение и насыщение парами лекарственных препаратов и т.п.). Задачей изобретения является создание конструкции для получения газожидкостных мелкодисперсионных и гомогенных смесей при работе как в газовой, так и в жидкой среде. Для этого универсальный аэрогидродинамический насадок содержит центральный канал принудительной подачи газа, ось которого совпадает с осью центрального тела, и периферийный кольцевой канал подачи жидкости, образованный внутренней стенкой трубы подвода жидкости и поверхностью центрального тела. Кольцевой канал подачи жидкости заканчивается кольцевым сходящимся коническим соплом. Ось щелевого канала сопла образует с осевой линией канала подвода газа угол α, лежащий в диапазоне 10°<α≤90° Выходное сечение сопла охватывает выходное сечение канала подачи газа. Техническим результатом изобретения является обеспечение возможности получения однородного мелкодисперсного облака газожидкостной смеси и удерживания длительное время в жидкой среде почти 100% подаваемого газа. 5 ил.

 

Устройство может быть использовано в промышленности (форсунки печей, двигателей внутреннего сгорания, камер сгорания, форсунки многофазных химических реакторов, аэраторы для насыщения воды воздухом в рыбных питомниках и рыбоводческих хозяйствах, аэраторы в системах флотации и биологической очистки воды и т.п.) и в здравоохранении (очистка воздуха от пыли, его увлажнение и насыщение парами лекарственных препаратов и т.п.).

Известна конструкция форсунки для распыления жидкости в газовой среде, патент РФ №2135892 [1]. Форсунка состоит из корпуса с цилиндрическим каналом, имеющего на входе шайбу-втулку с калиброванным отверстием. За втулкой соосно расположен эжекторный элемент в виде трубки Вентури (конфузор, цилиндрический канал, диффузор). По периметру конфузора параллельно его оси расположены сквозные цилиндрические каналы. Снаружи диффузора установлен полый цилиндр - направляющий аппарат коаксильно его наружной поверхности. Недостатком данного устройства является его конструктивная и технологическая сложность и, как следствие этого, - высокая цена изделия.

Известна конструкция паровой форсунки типа Э-ФП, предназначенной для распыливания жидких топлив и сжигания их в топках любых котлов, патент РФ №2118205 [2]. Распылительная головка этой форсунки состоит из эжекторного элемента, центрального канала подачи пара и периферийного кольцевого канала подачи топлива. Недостатком данного устройства также является его конструктивная и технологическая сложность и, как следствие, - этого высокая цена изделия.

Известна конструкция аэратора, предназначенного для мелкопузырчатой аэрации сточных вод, патент РФ №2181111 [3]. Каркас выполнен в виде полимерной перфорированной трубы с двухслойным диспергирующим покрытием из волокнистого материала. Основной недостаток этого устройства - засорение волокнистого материала, необходимость чистки аэратора.

Известен аэратор, предназначенный для насыщения жидкости газом, патент РФ №2048459 [4]. Аэратор содержит корпус и размещенный в нем импульсный источник выброса газа, имеющий прикрепленные к корпусу патрубки подачи и выброса газа. Импульсный источник выброса газа выполнен в виде соосно соединенного с патрубком подачи газа сегнетова колеса, выходные концы трубок которого имеют щелевые сопла. Патрубки выброса газа прикреплены к корпусу равномерно вокруг сегнетова колеса и тангенциально ему по направлению вращения. Выходные концы патрубков выброса газа выполнены изогнутыми и шарнирно связаны с этими патрубками. Аэратор еще снабжен трубкой для эжекции жидкости в проточную часть аэратора, один конец которой размещен в канале патрубки подачи газа и изогнут в направлении движения газа, а другой его конец расположен снаружи аэратора. Основными недостатками данного аэратора являются конструктивная и технологическая сложность, и жидкость насыщяется достаточно крупными пузырьками газа, которые быстро всплывают на поверхность. В жидкости растворяется не более 5% подаваемого газа.

Наиболее близким к предлагаемому устройству (прототипом) является струйный аппарат, патент РФ №1526791 [5].

Струйный аппарат предназначен для смешения различных сред и насыщения жидкости газами. Он состоит из приемной камеры, камеры смешения, диффузора, канала подачи рабочей жидкости и расположенного внутри него канала подачи газа. Канал подачи газа на своем конце имеет кавитатор с острой кромкой. При обтекании кавитатора рабочей жидкостью в газожидкостной среде возникают автоколебания, которые приводят к интенсивному перемешиванию жидкостей и насыщению жидкой среды газовыми пузырями. Основным недостатком струйного аппарата является невозможность получить однородную газожидкостную среду, насыщенную очень мелкими пузырьками газа, кроме того, он предназначен для работы только в жидкой среде.

Заявляемое изобретение направлено на простое конструктивное решение задач получения газожидкостных мелкодисперсионных и гомогенных смесей при работе как в газовой, так и в жидкой среде. Указанный результат достигается с помощью универсального аэрогидродинамического насадка, состоящего из центрального цилиндрического канала принудительной подачи газа, помещенного внутри кольцевого канала принудительной подачи жидкости, образованного центральным телом и внутренней стенкой подводящей трубы. Оси этих каналов совпадают. Кольцевой канал подачи жидкости заканчивается кольцевым сходящимся коническим соплом, охватывающим выходное отверстие центрального канала подачи газа.

Отличительным признаком настоящего изобретения является наличие кольцевого сходящегося конического сопла, охватывающего выходное отверстие центрального канала подачи газа.

Сущность настоящего изобретения поясняется чертежами, представленными на фиг.1 и 2, и описанием конструкции универсального насадка.

Фиг.1. Универсальный аэрогидродинамический насадок. Вариант 1.

Фиг. 1.2. Универсальный аэрогидродинамический насадок. Вариант 2.

На фигурах цифрами обозначены:

1. Кольцо, с помощью которого регулируется ширина выходного сечения кольцевого конического сопла выпуска жидкости.

2. Осевая линия кольцевого конического сопла.

3. Центральное тело, коническая хвостовая часть которого образует внутреннюю стенку конического сопла.

4. Внешний корпус насадка, концевая часть которого образует внешнюю стенку конического сопла.

5. Пилоны, которые крепят и центрируют центральное тело 3 в корпусе подводящей жидкость трубе.

6. Канал подачи жидкости, образованный подводящей трубой.

7. Канал подачи газа, образованный подводящей трубкой.

8. Центральное тело.

9. Подводящая труба.

Насадок решает следующие задачи.

1. При погружении в жидкость для перемешивания и насыщения жидкостей газами (аэратор).

2. При погружении в газовую среду для образования газожидкостного мелкодисперсного гомогенного облака.

Оно может применяться для:

1) насыщения диоксидами углерода питьевой и минеральной воды, пива, безалкогольных и слабоалкогольных напитков и других продуктов пищевой промышленности;

2) рекарбонизации воды в системах водоподготовки;

3) насыщения воды воздухом в системах обезжиривания;

4) насыщения воды воздухом в системах напорной флотации;

5) насыщения воды воздухом в системах аэрации сточных вод;

6) насыщения воды воздухом в рыбных питомниках, рыбоводческих хозяйствах;

7) насыщения воды воздухом либо озоном в системах обеззараживания;

8) насыщения воды воздухом в системах биологической очистки воды;

9) насыщения любых жидкостей кислородом, азотом, углекислым газом, аммиаком, метаном, воздухом, инертными и прочими газами;

10) газонасыщения с одновременным дозированием химических добавок и реагентов;

11) гидродинамической стерилизации воды и водных растворов;

12) эмульгирования и гомогенизации двухфазных и многофазных смесей и растворов;

13) в двигателях и пульверизаторах различного типа как форсунка для образования газожидкостного мелкодисперсного облака.

Устройство имеет простую конструкцию и позволяет увеличить производительность при одновременном снижении энергозатрат, повысить качества получаемых смесей и растворов, позволяет получать любые необходимые для выполнения поставленной задачи расходы газа и жидкости, обладает высокими эксплуатационными характеристиками, позволяет задержать в жидкой среде до 100% подаваемой газовой компоненты. При этом диаметры газовых пузырьков меньше 1 мм.

Насадок состоит из центрального канала принудительной подачи газа 7, просверленном в центральном теле 8, периферийного кольцевого канала принудительной подачи жидкой среды 6, образованного поверхностью центрального тела 8 и стенкой подводящей трубы 9. Канал 6 заканчивается кольцевым коническим соплом 2, охватывающим выходное отверстие центрального канала подачи газа 7. Отличительным признаком заявляемого устройства является наличие соплового аппарата у канала подачи жидкой среды, выполненного в виде сходящегося кольцевого конического канала, угол конусности α которого (фиг.1 и 2), т.е. угол между осью кольцевого сходящегося конического канала сопла и осью канала подачи газа, выбирается в зависимости от решаемой задачи и лежит в диапазоне 10°<α≤90°.

Возможны варианты щелевого конического сопла, в которых угол конусности внутренней стенки сопла отличен от угла конусности наружной стенки сопла.

Далее, стенки щелевого конического сопла могут быть выполнены в виде отрезков прямых или в виде отрезков различных гладких кривых. В последнем случае угол конусности конического сопла α определяется как угол между касательной, проведенной к криволинейной стенке в конечной (выходной) точке контура, и осью канала подачи газа.

Проверка достижения заявленных эффектов выполнена опытным путем.

Эксперименты, проведенные с насадками, имеющими угол конусности

α<10°, показали низкое качество распыления (малые частоты перемешивания и, как следствие этого, наличие крупных пузырей или крупных капель жидкости).

Насадок, имеющий угол конусности внутренней стенки сопла 10° и угол конусности внешней стенки сопла 13°, показал уже хорошее качество распыления.

На фиг.3-4 приведены результаты работы насадка с средним углом конусности α=52.5° (угол конусности внутренней стенки сопла 45°, угол конусности внешней стенки сопла 60°).

На фиг.3 а, б представлена работа насадка, размещенного в воздухе.

На фиг.4 представлена работа насадка, погруженного в воду.

Фотосъемка произведена цифровой фотокамерой NICON 40D, длительность фотовспышки ~10-3с. При такой длительности фотовспышки фотография картины течения газоводяной смеси получается несколько размазанной, отдельные пузырьки воздуха из-за большой скорости движения изображаются в виде белых хлопьев, а в целом газоводяная пузырьковая и капельная смесь изображается в виде сплошного белого облака.

Такие же хорошие результаты распыления показал и насадок, имеющий кольцевое сопло с углом «конусности» α=90°, с параллельными плоскими стенками.

Описанный выше универсальный аэрогидродинамический насадок отличается простотой конструкции, может использоваться как в газовой, так и в жидкостной среде, позволяет получать однородные мелкодисперсные облака газожидкосной смеси, длительное время удерживать в жидкой среде почти 100% подаваемого газа. На основе этого насадка можно разработать конструкции высокоэффективных форсунок и аэраторов.

Список источников информации

1. Аверкин А.Г., Панов Е.А., Федин С.В., Орлова Н.А. Форсунка для распыления жидкости в газовой среде. // Патент РФ №2135892. Кл. F23D 11/24. 27.08.1999 г.

2. Полиградов Б.Г. Форсунка «ЭДИПОЛ» // Патент РФ №2118205. Кл. В05В 1/34, 7/10. 27/08/1998 г.

3. Кожушко А.Ю., Илюшин В.А. Аэратор. // Патент РФ №2181111. Кл. C02F 003/20. 14.08.2008 г.

4. Мистюрин Ю.Н. Аэратор. // Патент РФ №2048459. Кл. 6 С02Р 7/00, С12М 1/04. 11.20.1995 г.

5. Карликов В.П., Резниченко Н.Т., Хомяков А.Н., Чернявский Ф.Н., Шоломович Г.И. Струйный аппарат. // Патент РФ №1526791. Кл. B01F 5/04, 5/00. 07.12.1989 г. Прототип.

Устройство, предназначенное для распыления газовой струи в жидкости и для распыления жидкой струи в газе, содержащее центральный канал подачи газа, ось которого совпадает с осью центрального тела, и периферийный кольцевой канал подачи жидкости, образованный внутренней стенкой трубы подвода жидкости и поверхностью центрального тела, отличающееся тем, что кольцевой канал подачи жидкости заканчивается кольцевым сходящимся коническим соплом, ось щелевого канала которого образует с осевой линией канала подвода газа угол α, лежащий в диапазоне 10°<α≤90°, при этом выходное сечение сопла охватывает выходное сечение канала подачи газа.



 

Похожие патенты:

Изобретение относится к распылителям жидкости. .

Изобретение относится к области распыления жидкостей и может быть использовано в химической, металлургической, лакокрасочной, пищевой промышленности. .

Изобретение относится к энергетике и предназначено для распиливания жидкостей и суспензий, например водоугольного топлива, и может быть использовано для нанесения различных покрытий.

Изобретение относится к способу наполнения газового потока капельками жидкости согласно ограничительной части пункта 1 формулы изобретения. .

Изобретение относится к области распыления жидкостей и может быть использовано в химической, металлургической, лакокрасочной, пищевой отраслях промышленности. .

Изобретение относится к области распыления жидкостей и может быть использовано в химической, металлургической, лакокрасочной промышленности, в частности, при приготовлении коллоидных растворов, нанесении лакокрасочных и защитных покрытий, а также при охлаждении проката и т.п.

Изобретение относится к распылительным устройствам и может найти применение в химической, пищевой, в частности, в крахмалопаточной промышленности для распыления суспензий, пульп, растворов и других жидких материалов.

Изобретение относится к технике распыления жидкостей сжатым воздухом и может быть использовано при производстве установок для распыления различных жидкостей, химических растворов.

Изобретение относится к противопожарной технике и может быть использовано в промышленных и гражданских объектах с повышенной пожарной опасностью для локализации очагов возгорания

Изобретение относится к распылительным соплам, которые смешивают жидкость и газ в мелкокапельном факеле распыла, например нефть и пар в установке для каталитического крекинга

Изобретение относится к области распыления жидкостей и может быть использовано в химической, металлургической, лакокрасочной промышленности

Изобретение относится к энергетике и предназначено для распыливания жидкостей и суспензий, например водоугольного топлива (ВУТ). В пневматической форсунке кольцевое щелевое газовое сопло установлено на срезе диффузора и имеет коническую форму с углом конусности от 60 до 150 градусов. Внутренняя кольцевая газовая камера форсунки дополнительно снабжена двумя соплами, установленными напротив друг друга. Оси сопел пересекаются или скрещиваются так, что угол между осью каждого сопла и осью симметрии пневматической форсунки составляет от 30 до 90 градусов. Суммарная площадь поперечных выходных сечений сопел составляет 0,3-1 площади поперечного выходного сечения щелевого кольцевого газового сопла. По второму варианту пневматической форсунки кольцевое щелевое газовое сопло установлено на срезе диффузора и имеет коническую форму с углом конусности от 60 до 150 градусов, и выходное поперечное сечение с переменной площадью по периметру кольца. Техническим результатом изобретения является обеспечение дисперсности распыливания жидкостей и суспензий без быстрого износа оборудования и возможность управления размерами и формой газокапельного факела. 2 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к судостроению, а именно к водометным движителям судов, лодок и других плавучих средств. Струйный насадок водометного движителя содержит наружный корпус с установленным в нем центральным телом, которое выполнено в виде тела вращения и образует совместно с наружным корпусом кольцевой канал подачи жидкости с выходным соплом и канал подвода газа. Центральное тело выполнено с центральным осевым каналом, связанным своим входом с каналом подвода газа. Выходное сечение сопла охватывает выходное сечение центрального осевого канала, а осевая линия выходного сопла расположена по отношению к оси центрального осевого канала под углом 20°÷90°. Достигается увеличение тяги за счет высокочастотного автоколебательного режима течения выходного потока, при одновременном упрощении конструкции струйного насадка. 3 ил.

Изобретение относится к устройству для очистки для установленной на транспортном средстве камеры. Воздушный канал (12) и две линии путей (11a) и (11b) для очищающей жидкости предоставляются в форсунке (7), и кроме того, воздушный канал (12) разделяется на две линии дальних концевых участков (14a) и (14b). После этого дальний концевой участок пути (11a) для очищающей жидкости, и дальний концевой участок (14a) воздушного канала (12) принудительно объединяются, и дальний концевой участок пути (11b) для очищающей жидкости, и дальний концевой участок (14b) воздушного канала (12) принудительно объединяются. Таким образом, если сжатый воздух подается в воздушный канал (12), результирующий воздушный поток вызывает отрицательное давление на стороне нисходящего направления. Это позволяет получать очищающую жидкость в виде аэрозоли и всасывать ее, и смешивать очищающую жидкость в виде аэрозоли со сжатым воздухом, за счет чего можно очищать поверхность (1a) линзы камеры. Обеспечивается образование очищающей жидкости в виде аэрозоли, что позволяет уменьшить используемое количество очищающей жидкости. 3 з.п. ф-лы, 9 ил.
Наверх