Состав ингибитора коррозии и способ его получения


 


Владельцы патента RU 2421549:

Открытое акционерное общество "Газпром" (RU)

Изобретение относится к области защиты металлов от коррозии и может быть использовано в нефтегазодобывающей промышленности. Способ включает взаимодействие жирных карбоновых кислот и полиэтиленполиаминов ПЭПА при нагревании и перемешивании в течение 6-12 часов с последующим отгоном реакционной воды, охлаждением, добавлением реагентов и растворением реакционной массы, при этом в качестве жирных карбоновых кислот используют жирные карбоновые кислоты C6-C12, мольное соотношение которых к ПЭПА составляет 1-2,5:1, смесь нагревают до 230-250°С, охлаждение осуществляют до 60-80°С и добавляют в качестве реагентов смесь предельных или непредельных карбоновых кислот и/или нафтеновых кислот С1020 в мольном соотношении 0,5-1,5:1 к ПЭПА, реакционную массу нагревают до 230-250°С и выдерживают при перемешивании до прекращения отгона реакционной воды, полученную реакционную массу охлаждают при перемешивании до 40-60°С, добавляют в нее деэмульгатор и растворяют в спирте C1-C4 и/или в ароматическом углеводороде или в углеводороде изостроения, после чего продолжают перемешивать в течение 0,5-1,0 часа. Ингибитор коррозии содержит, мас.%: продукт взаимодействия жирных карбоновых кислот и ПЭПА 10,0-70,0; деэмульгатор 0,1-2,0; растворитель - остальное. Технический результат: повышение степени защиты от коррозии. 2 н.п. ф-лы, 2 табл.

 

Группа изобретений относится к ингибиторам коррозии, которые используются в нефтяной и газовой промышленности для защиты оборудования и трубопроводов, эксплуатируемых в агрессивных средах, в условиях подверженности наводородоживанию, углекислотной и сероводородной коррозии, в частности, к составам, используемым в качестве ингибиторов коррозии в минерализованных средах, содержащих кислые примеси - сероводород, хлористый водород, углекислый газ, меркаптаны.

Наиболее близким к предлагаемому способу получения ингибитора коррозии является способ получения ингибитора коррозии, включающий взаимодействие карбоновых кислот и полиэтиленполиаминов ПЭПА при нагревании и перемешивании в течение 6-12 часов смеси жирных карбоновых кислот и ПЭПА с последующим отгоном реакционной воды, охлаждением полученной реакционной массы, добавлением реагентов и растворением реакционной массы в растворителе (см. патент РФ № 2147627, кл. C23F 11/14, 2000 г.).

Наиболее близким к предлагаемому ингибитору коррозии является ингибитор коррозии для защиты в кислых и сероводородсодержащих средах, содержащий продукт взаимодействия карбоновых кислот и полиэтиленполиаминов (ПЭПА) и растворитель, причем в качестве карбоновых кислот используют предельные и непредельные карбоновые кислоты С1020 (см. патент РФ № 2147627, кл. C23F 11/14, 2000 г.).

Данный ингибитор коррозии представляет собой раствор амидоаминов и аминоимидазолинов, получаемый путем взаимодействия (конденсации) полиэтиленполиаминов (как индивидуальных - диэтилентриамина, триэтилентетрамина и др., так и их технических смесей) с предельными и непредельными карбоновыми кислотами С1020, и неионогенного поверхностно-активного вещества (ПАВ) в углеводородном и спиртовом растворителе.

Данный ингибитор является диспергируемым в воде и хорошо зарекомендовал себя при защите от коррозии оборудования и трубопроводов систем заводнения и сточных вод при добыче нефти.

Однако применение данного ингибитора невозможно в системах газодобычи, где используется этаноламиновая очистка газов из-за сильного пенообразования водных растворов этаноламинов, приводящего к уносу абсорбента. Кроме того, следует иметь в виду, что его применение ограничено при добыче газового конденсата, нефти в системах сбора из-за стабилизации эмульсии углеводород (газовый конденсат, нефть) - вода.

Таким образом, недостатком известного ингибитора коррозии является его низкая эффективность, которая обуславливает его низкие эксплуатационные свойства, что не позволяет в полной мере использовать данный ингибитор на газодобывающих предприятиях.

Техническим результатом, на достижение которого направлена предлагаемая группа изобретений, является повышение эффективности ингибитора коррозии и улучшение его эксплуатационных свойств, а именно обеспечение защиты от сероводородной и углекислотной коррозии не менее 90%; защиты от наводороживания не менее 70%, низкого пенообразования в системе диэтаноламин - вода не выше 25 мм в присутствии ингибитора, быстрый распад эмульсии углеводород (газовый конденсат, нефть) - вода в течение не более 10 мин.

Данный технический результат в части способа получения ингибитора коррозии достигается за счет того, что в способе получения ингибитора коррозии, включающем взаимодействие карбоновых кислот и полиэтиленполиаминов ПЭПА при нагревании и перемешивании в течение 6-12 часов смеси жирных карбоновых кислот и ПЭПА с последующим отгоном реакционной воды, охлаждением полученной реакционной массы, добавлением реагентов и растворением реакционной массы в растворителе, согласно изобретению, в качестве жирных карбоновых кислот используют жирные карбоновые кислоты C6-C12, мольное соотношение которых к ПЭПА составляет 1-2,5:1, нагревание смеси осуществляют до температуры 230-250°С, охлаждение полученной реакционной массы осуществляют до температуры 60-80°С и добавляют в качестве реагентов смесь предельных или непредельных карбоновых кислот и/или нафтеновых кислот С1020, взятых в мольном соотношении 0,5-1,5:1 к ПЭПА, реакционную массу нагревают до температуры 230-250°С и выдерживают при перемешивании до прекращения отгона реакционной воды, полученную реакционную массу охлаждают при перемешивании до температуры 40-60°С, добавляют в нее деэмульгатор и растворяют в спирте С14 и/или в ароматическом углеводороде или в углеводороде изостроения, после чего для получения выходного продукта продолжают перемешивать в течение 0,5-1,0 часа.

Данный технический результат в части ингибитора коррозии достигается за счет того, что ингибитор коррозии, содержащий продукт взаимодействия карбоновых кислот и ПЭПА и растворитель, согласно изобретению, дополнительно содержит деэмульгатор, в качестве растворителя - спирт C1-C4 и/или ароматический углеводород или углеводород изостроения, при следующем соотношении компонентов, мас.%:

продукт взаимодействия карбоновых кислот и ПЭПА 10,0-70,0
деэмульгатор 0,1-2,0
спирт C1-C4 и/или ароматический углеводород
или углеводород изостроения остальное,

и получен описанным выше способом.

Сущность данной группы изобретений поясняется таблицами 1 и 2, где в таблице 1 показаны используемые при приготовлении ингибитора коррозии жирные карбоновые кислоты, в таблице 2 - составы ингибиторов коррозии и их эксплуатационные характеристики.

Сущность предлагаемого способа получения ингибитора коррозии состоит в том, что взаимодействие (конденсацию) карбоновых кислот и ПЭПА проводят в две стадии, причем на первой стадии конденсируют жирные карбоновые кислоты С612 и ПЭПА в мольном соотношении 1-2,5:1, а на второй стадии конденсируют продукт, полученный на первой стадии, с предельными или непредельными карбоновыми кислотами и/или нафтеновыми кислотами С1020 в мольном соотношении к ПЭПА, равным 0,5-1,5:1.

Получаемый при реализации данного способа ингибитор коррозии включает смесь амидоаминов и аминоимидазолинов в растворителе и содержит 10,0-70,0 мас.% смеси, полученной предлагаемым способом, 0,1-2,0 мас.% деэмульгатора, остальное - спирт C1-C4 и/или ароматический углеводород или углеводород изостроения.

При взаимодействии (конденсации) карбоновых кислот с ПЭПА при температуре 230-250°С образуется смесь аминоамидов и аминоимидазолинов. При проведении конденсации в две стадии и с использованием кислот указанного выше ингибитора (см. таблицу 1) на каждой из стадий получают сложную смесь, включающую амидоамины и аминоимидазолины, определяющие свойства предлагаемого ингибитора коррозии. Кроме того, при растворении смеси, полученной таким способом, в указанных спиртах, углеводородах или в их смесях, получают ингибитор, обладающий высокими защитными свойствами от общей коррозии, охрупчивания, обеспечивающий низкое пенообразование системы диэтаноламин - вода. При этом защита от сероводородной и углекислотной коррозии составляет не менее 90%; защита от наводороживания - не менее 70%. Кроме того, в присутствии данного ингибитора коррозии также установлено низкое пенообразование в системе диэтаноламин - вода, которое составляет не выше 25 мм.

Для сокращения времени распада эмульсии в системе газовый конденсат - вода в процессах газодобычи или в системе нефть - вода при нефтедобыче в состав ингибитора коррозии вводят 0,1-2,0 мас.% деэмульгатора, в качестве которого могут быть использованы блок-сополимеры окиси алкиленов, причем указанный распад происходит в течение не более 10 мин.

В качестве растворителя могут быть использованы спирты С14 и/или ароматические углеводороды или углеводороды изостроения или их смеси. Таким образом, состав ингибитора коррозии включает следующие компоненты, мас.%:

продукт взаимодействия карбоновых кислот и ПЭПА 10,0-70,0
деэмульгатор 0,1-2,0
спирт C1-C4 и/или ароматический углеводород
или углеводород изостроения остальное.

Состав ингибитора коррозии готовят по следующей технологии.

В реактор, снабженный мешалкой и рубашкой, загружают жирные карбоновые кислоты C6-C12 и ПЭПА в мольном соотношении 1-2,5:1.

Смесь нагревают постепенно до 230-250°С и перемешивают в течение 6-12 часов, отгоняя реакционную воду.

После выдержки реакционной массы при перемешивании и отгонке заданного количества реакционной воды реакционную массу охлаждают до 60-80°С и в реактор загружают предельные или непредельные карбоновые кислоты С1020 и (или) нафтеновые кислоты С1012. Реакционную смесь нагревают до 230-250°С и выдерживают при перемешивании до прекращения отгона реакционной воды.

Полученную реакционную смесь охлаждают при перемешивании до температуры 40-60°С, добавляют органический растворитель и расчетное количество деэмульгатора. Смесь перемешивают в течение ~0,5-1 часа.

ПРИМЕРЫ

Составы ингибиторов коррозии по данному изобретению и их свойства приведены в таблице 2. Эксплуатационные характеристики оценивались по следующим методикам:

- защитная эффективность ингибиторов коррозии - гравиметрическим методом по ГОСТ 9.506-87 (СТ СЭВ 5733-86) «Ингибитор коррозии металлов в водно-нефтяных средах. Методы определения защитной способности»;

- исследование пенных характеристик, определение времени распада эмульсии и степени защиты ингибитора коррозии от охрупчивания металла - в соответствии с «Методическими указаниями по испытанию ингибиторов коррозии для газовой промышленности», РАО «Газпром», ВНИИГАЗ (второе издание), М., 1996 и ГОСТ 12579-93 (ИСО 7801-84) «Проволока. Метод испытания на перегиб».

Продукт конденсации, используемый в примерах 1, 2, 5, 6, 14, получен взаимодействием ПЭПА с предельными карбоновыми кислотами С612 на первой стадии и на второй стадии - непредельной карбоновой кислотой C18.

Продукт конденсации, используемый в примерах 3, 4, 8, 10, 11, 13, получен взаимодействием ПЭПА с предельными карбоновыми кислотами С612 на первой стадии и на второй стадии - предельными карбоновыми кислотами C18-C20.

Продукт конденсации, используемый в примерах 7, 9, 12, получен взаимодействием ПЭПА с предельными карбоновыми кислотами C6-C12 на первой стадии и на второй стадии - нафтеновыми кислотами С1012.

Таким образом, данный способ позволяет получать эффективные ингибиторы коррозии для нефтегазодобывающих предприятий. Их состав по своим эксплуатационным свойствам соответствует требованиям газодобывающих предприятий, а именно достигается защита от сероводородной и углекислотной коррозии не менее 90%; защита от наводороживания более 70%. Кроме того, эти составы обеспечивают низкое пенообразование в системе диэтаноламин - вода в присутствии ингибитора и быстрый распад эмульсии углеводород (газовый конденсат) - вода.

Таблица 1.
Жирные карбоновые кислоты, используемые при приготовлении ингибитора коррозии
№ примера На первой стадии На второй стадии
1 Капроновая кислота Олеиновая кислота
2 Капроновая кислота Олеиновая кислота
3 2-этилгексановая кислота Эруковая кислота
4 Лауриновая кислота Стеариновая кислота
5 2-этилгексановая кислота Олеиновая кислота
6 2-этилгексановая кислота Олеиновая кислота
7 Капроновая кислота Нафтеновые кислоты
8 Лауриновая кислота Эруковая кислота
9 2-этилгексановая кислота Нафтеновые кислоты
10 Капроновая кислота Стеариновая кислота
11 2-этилгексановая кислота Стеариновая кислота
12 Лауриновая кислота Нафтеновые кислоты
13 Капроновая кислота Эруковая кислота
14 Лауриновая кислота Олеиновая кислота

1. Способ получения ингибитора коррозии, включающий взаимодействие карбоновых кислот и полиэтиленполиаминов ПЭПА при нагревании и перемешивании в течение 6-12 ч смеси жирных карбоновых кислот и ПЭПА с последующим отгоном реакционной воды, охлаждением полученной реакционной массы, добавлением реагентов и растворением реакционной массы в растворителе, отличающийся тем, что в качестве жирных карбоновых кислот используют жирные карбоновые кислоты С6-C12, мольное соотношение которых к ПЭПА составляет 1-2,5:1, нагревание смеси осуществляют до температуры 230-250°С, охлаждение полученной реакционной массы осуществляют до температуры 60-80°С и добавляют в качестве реагентов смесь предельных или непредельных карбоновых кислот и/или нафтеновых кислот С1020, взятых в мольном соотношении 0,5-1,5:1 к ПЭПА, реакционную массу нагревают до температуры 230-250°С и выдерживают при перемешивании до прекращения отгона реакционной воды, полученную реакционную массу охлаждают при перемешивании до температуры 40-60°С и добавляют в нее деэмульгатор и растворяют в спирте C1-C4 и/или в ароматическом углеводороде или в углеводороде изостроения после чего для получения выходного продукта продолжают перемешивать в течение 0,5-1,0 ч.

2. Ингибитор коррозии, содержащий продукт взаимодействия карбоновых кислот и ПЭПА и растворитель, отличающийся тем, что он дополнительно содержит деэмульгатор, а в качестве растворителя спирт C1-C4 и/или ароматический углеводород или углеводород изостроения при следующем соотношении компонентов, мас.%:

продукт взаимодействия карбоновых кислот и ПЭПА 10,0-70,0
деэмульгатор 0,1-2,0
спирт C1-C4 и/или ароматический углеводород
или углеводород изостроения остальное,

и получен способом по п.1.



 

Похожие патенты:

Изобретение относится к области защиты металлов от коррозии в серной, соляной и ортофосфорной кислотах с помощью ингибитора коррозии и может быть применено в травильных растворах, в кислотных очистках оборудования, в преобразователях ржавчины на основе ортофосфорной кислоты.

Изобретение относится к области защиты металлов от коррозии в минерализованных средах, содержащих диоксид углерода, ингибиторами и может быть использовано при защите от коррозии трубопроводов и оборудования в нефтяной отрасли.
Изобретение относится к области защиты металлов от коррозии и может быть использовано для защиты оборудования от сероводородной и углекислотной коррозии в нефтедобывающей промышленности.

Изобретение относится к области защиты металлов от кислотной коррозии и может быть использовано для защиты нефте- и газопроводов, химического и нефтехимического оборудования от кислотной коррозии.

Изобретение относится к области защиты металлов от углекислотной коррозии и может быть использовано, например, на нефтепромысловых и нефтеперерабатывающих производствах.

Изобретение относится к защите металлов от коррозии в кислых средах с помощью ингибиторов и может быть применено в травильных растворах и кислотных очистках оборудования.

Изобретение относится к защите металлов от коррозии в серной и соляной кислотах и может быть использовано в травильных растворах и кислотных очистках оборудования.

Изобретение относится к защите металлов от кислотной коррозии с помощью ингибиторов и может быть использовано при травлении стали, титана и индия, а также для кислотных очисток оборудования.

Изобретение относится к области защиты металлов от коррозии и может быть использовано в нефтяной промышленности для защиты нефтепромыслового оборудования и для кислотной обработки буровых скважин, а также для обработки призабойной зоны нефтяных и водонагнетательных скважин.

Изобретение относится к синтезу не известных ранее N,N-диэтил-N-[изоалкоксикарбонилметил]-N-[алкилфеноксиполи(этиленокси)карбонилэтил]аммоний 2-гидроксипропионатов формулы где R1 = алкил фракции C 8-С10; R2 = изоалкил С12 , изоалкил фракции С12-С14, изоалкил С 14; n = средняя степень оксиэтилирования, равная 6, обладающие свойствами ингибиторов коррозии стали в солянокислых водных средах.

Изобретение относится к области защиты металлов от коррозии, в частности к области защиты низколегированных и низкоуглеродистых сталей от коррозии в минерализованных водных средах, содержащих растворенный кислород и углекислый газ

Изобретение относится к области защиты металлов от коррозии в нефтяной отрасли ингибиторами и может быть использовано при защите от коррозии оборудования, контактирующего с минерализованной водной фазой водно-нефтяных эмульсий, содержащих сероводород

Изобретение относится к защите металлов от коррозии и может быть использовано в травильных ваннах и при кислотных очистках оборудования

Изобретение относится к области защиты оборудования от сероводородной и углекислотной коррозии в минерализованных водных и водонефтяных средах и может быть использовано в нефтедобывающей промышленности
Изобретение относится к области защиты металлов от коррозии в солянокислой среде и может быть применено в энергетике, металлургии, машиностроении при кислотной обработке металлических поверхностей оборудования и изделий, а также в нефте- и газодобывающей промышленности
Изобретение относится к бактерицидным составам, применяемым, в частности, в нефтегазодобывающей промышленности для подавления роста бактерий (СВБ) в нефтепромысловых средах и в заводняемом нефтяном пласте, а также для защиты оборудования от сероводородной коррозии

Изобретение относится к области защиты металлов от кислотной коррозии и может быть использовано при травлении стали, никеля и кобальта, а также для кислотных очисток оборудования и промывок скважин

Изобретение относится к средствам защиты металлов от коррозии в минерализованных средах и может быть использовано при защите нефтепромыслового оборудования от сероводородной, углекислотной и микробиологической коррозии в системах добычи, транспорта, хранения нефти, в заводняемых нефтяных пластах и при вторичных методах добычи нефти. В качестве ингибитора коррозии - бактерицида стали в минерализованных сероводородсодержащих и углекислотных средах предлагается использовать бромид N-алкил-N-метилморфолиния (алкил=н-децил, н-додецил, н-тетрадецил, н-гексадецил) общей формулы , где n=10, 12, 14, 16. Технический результат: расширение арсенала известных средств указанного назначения, снижение концентрации ингибитора коррозии - бактерицида до 10 мг/л при обеспечении защитного эффекта стального оборудования не менее 90%. 1 табл., 4 пр.

Изобретение относится к области защиты металлов от коррозии в кислых и водно-солевых средах и может быть использовано в нефтедобывающей промышленности, в металлургии и в энергетике. Способ получения ингибитора кислотной коррозии на основе циклических аминоамидов включает взаимодействие индивидуальных аминов и/или полиаминов с полиэтилентерефталатом и хлорпарафином при весовом соотношении исходных реагентов 0,4÷2,5:1:0,5÷2,5 соответственно при температуре 110-125°C в течение 2,0-4,5 ч с последующим вводом в продукты синтеза при температуре 50-60 °C уротропина в количестве (0,07÷0,37) моль и соляной кислоты с последующим перемешиванием. Технический результат - расширение сырьевой базы и упрощение технологии получения ингибитора коррозии. 3 з.п.ф-лы, 1 табл., 29 пр.

Изобретение относится к области защиты металлов от коррозии и может быть использовано для защиты оборудования атмосферной ректификации процесса первичной переработки нефти на нефтеперерабатывающих заводах, имеющих в своем составе установки каталитического крекинга и замедленного коксования. Способ включает использование ингибитора коррозии, обладающего нейтрализующими свойствами, в виде средства защиты, обеспечивающего соответствие показателей качества светлых продуктов дистилляции нефти требованиям действующей нормативной и технической документации, вводимого в шлемовый трубопровод атмосферных колонн путем распыливания под давлением, при этом в качестве средства защиты используют фенольную воду, полученную очисткой фенольно-сульфидной конденсационной воды процесса каталитического крекинга/замедленного коксования от сульфидной серы методом отпарки-ректификации, в количестве 0,03-9,0 кг на 1 кг конденсационной дренажной воды колон атмосферной дистилляции. Технический результат: расширение арсенала средств защиты оборудования, упрощение и удешевление способа защиты, обеспечивающего высокую эффективность антикоррозионной защиты оборудования, а также квалифицированную утилизацию фенольно-сульфидной воды. 2 ил., 4 табл., 6 пр.
Наверх