Способ измерения влажности зерна зерновых сельскохозяйственных культур

Изобретение относится к исследованию и анализу материалов, а именно к способам определения влажности зерна зерновых сельскохозяйственных культур, в том числе подсолнечника, кукурузы и рапса. Техническим результатом является возможность дистанционно осуществлять оперативный контроль влажности зерна зерновых сельскохозяйственных культур, произрастающих непосредственно на полях, и принять решение о моменте начала уборки урожая. В предложенном способе измеряют мощность СВЧ-излучения, отраженного от исследуемого соцветия зерновой сельскохозяйственной культуры, и сравнивают с мощностью СВЧ-излучения, отраженного от соцветия зерновой сельскохозяйственной культуры с известной или базовой влажностью, например 7%, и при помощи калибровочной кривой, связывающей изменение мощности СВЧ-излучения, отраженного от соцветия зерновой сельскохозяйственной культуры, с влажностью сельскохозяйственного материала, определяют влажность зерна. 2 ил.

 

Изобретение относится к исследованию и анализу материалов, а именно к способам определения влажности зерна зерновых сельскохозяйственных культур, в том числе подсолнечника, кукурузы и рапса.

Известны способы определения влажности зерна сельскохозяйственных культур с помощью емкостных влагомеров (Лисовский В.В., Современные методы экспрессного измерения влажности сельскохозяйственных материалов // Вести национальной академии наук Беларуси, серия аграрных наук, №2, 2006, с.102).

Известен способ определения влажности зерна сельскохозяйственных культур по поглощению радиоволн сверхвысокой частоты при их прохождении через эти материалы (Бензарь В.К. Техника СВЧ-влагометрии, Мн., 1974, с.352).

Известен способ определения влажности зерна сельскохозяйственных культур, основанный на изменении характеристик электромагнитного поля, взаимодействующего с влажным материалом (Лисовский В.В., Современные методы экспрессного измерения влажности сельскохозяйственных материалов // Вести национальной академии наук Беларуси, серия аграрных наук, №2, 2006, с.102).

Однако эти способы позволяют определять влажность в уже убранной и подготовленной для переработки сельскохозяйственной продукции и не позволяют принять оптимальное решение о моменте начала и сроках уборки урожая, которые связаны, в том числе, с тем, что на элеваторы принимается зерно с влажностью, не превышающей 6-8%, и при превышении этого показателя зерно доводится до кондиции с помощью сушильных агрегатов, что приводит к удорожанию себестоимости продукции.

Техническим результатом является возможность дистанционно осуществлять оперативный контроль влажности зерна зерновых сельскохозяйственных культур (подсолнечника, кукурузы, рапса и др.), произрастающих непосредственно на полях.

Технический результат достигается тем, что измеряют мощность СВЧ-излучения, отраженного от исследуемого соцветия зерновой сельскохозяйственной культуры (подсолнечника или кукурузы или рапса и др.), сравнивают с мощностью СВЧ-излучения, отраженного от соцветия зерновой сельскохозяйственной культуры, с известной (базовой) влажностью, например 7%, и с помощью калибровочной кривой, связывающей изменение мощности СВЧ-излучения, отраженного от соцветия зерновой сельскохозяйственной культуры, с влажностью сельскохозяйственного материала (семена подсолнечника или зерно кукурузы или семена рапса и др.), определяют влажность зерна (семян) сельскохозяйственной культуры.

Ниже приведен пример осуществления изобретения.

Пример. Дистанционное измерение влажности семян подсолнечника, произрастающего непосредственно на поле.

Измерения изменения отраженной мощности СВЧ-излучения (т.е. коэффициента отражения как отношения отраженной мощности к излученной) осуществляют с помощью установки, представленной на фиг.1, где 1 - индикатор КСВН и ослабления Я2Р - 67; 2 - генератор качающейся частоты (ГКЧ); 3 - волноводный переход; 4 - направленный детектор излученного сигнала; 5 - направленный детектор отраженного сигнала; 6 - рупорная приемо-передающая пирамидальная антенна. Измерения отраженной мощности проводят дистанционно от соцветий подсолнечника.

Снимают калибровочную кривую, связывающую изменение мощности отраженного СВЧ-излучения от сельскохозяйственной культуры (Дб) с влажностью сельскохозяйственного материала (% об.). Для этого в качестве объекта с базовой влажностью выбирают соцветие подсолнечника с влажностью семян 7%, измеренной емкостным влагомером, и измеряют мощность отраженного от него СВЧ-излучения вышеуказанным прибором. Далее измеряют изменение отраженной мощности СВЧ-излучения также вышеуказанным прибором от соцветий с другой влажностью, также измеренной емкостным влагомером. Полученная экспериментально калибровочная кривая приведена на фиг.2, где по оси абцисс отложена объемная влажность семян подсолнечника (D), а по оси ординат отложено отношение модуля коэффициента отражения СВЧ-излучения от соцветия подсолнечника при данной влажности к модулю коэффициента отражения СВЧ-излучения от соцветия подсолнечника при базовой влажности семян подсолнечника 7%

где

Ротр - отраженная от объекта мощность СВЧ-излучения,

Рпад - мощность излучения, падающая на объект,

Ротр0 - мощность СВЧ-излучения, отраженная от соцветия подсолнечника, при базовой влажности семян подсолнечника 7%.

Для измерения влажности исследуемой сельскохозяйственной культуры измеряют изменение отраженного от нее СВЧ-сигнала относительно СВЧ-сигнала, отраженного от соцветия с базовой влажностью. Далее в соответствии с калибровочным графиком по изменению мощности отраженного СВЧ-сигнала определяют влажность семян подсолнечника.

Аналогичные результаты получают при определении влажности зерен кукурузы и семян рапса.

1. Способ измерения влажности зерна сельскохозяйственных культур, характеризующийся тем, что измеряют мощность СВЧ излучения, отраженного от исследуемого соцветия зерновой сельскохозяйственной культуры, сравнивают с мощностью СВЧ излучения, отраженного от соцветия зерновой сельскохозяйственной культуры с известной (базовой) влажностью, и с помощью калибровочной кривой, связывающей изменение мощности СВЧ излучения, отраженного от соцветия зерновой сельскохозяйственной культуры, с влажностью сельскохозяйственного материала, определяют влажность зерна (семян) сельскохозяйственной культуры.

2. Способ по п.1, характеризующийся тем, что в качестве сельскохозяйственной культуры используют или подсолнечник, или кукурузу, или рапс.

3. Способ по п.1, характеризующийся тем, что в качестве базовой влажности используют влажность 7%.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к способам измерений и может быть использовано в сельском хозяйстве, мелиорации при составлении земельного кадастра и т.п. .

Изобретение относится к области измерительной техники и может быть использовано для определения объемного содержания нефти (или нефтепродуктов) и воды в потоке водонефтяных эмульсий в трубопроводе, в диапазоне от 0 до 100% по каждой компоненте при любой степени минерализации воды, а также для индикации границ раздела газонефтеводяной смеси в резервуарах.

Изобретение относится к области измерительной техники и может быть использовано для определения объемной доли жидкости в потоке газожидкостной смеси (ГЖС) в рабочих условиях.

Изобретение относится к системе выявления и локализации воды в структуре сэндвич (1) для летательного аппарата, имеющей в своем составе средство для нагревания воды, присутствующей в промежуточном слое структуры сэндвич, и средство для создания по меньшей мере одного изображения поверхности структуры сэндвич, причем упомянутое изображение демонстрирует отличительные зоны упомянутой поверхности, соответствующие наличию воды в промежуточном слое, в которой средство для нагревания воды содержит устройство (2, 3, 6) для излучения внутри структуры сэндвич микроволн на частоте, по существу равной резонансной частоте молекул воды.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами, в частности для измерения размеров капель воды в сырой нефти.

Изобретение относится к области измерительной техники и может быть использовано на продуктивных газоконденсатных скважинах, на установках подготовки газа к транспорту, установках первичной переработки газа для определения расхода газа, расхода жидкости, доли воды и доли конденсата в жидкости без разделения продукта добычи на газообразную и жидкую фазы.

Изобретение относится к области электрических измерений неэлектрических величин и может быть использовано для контроля влажности материалов. .

Изобретение относится к способам определения влажности жидких углеводородов и топлив и может найти применение в экспресс-контроле влажности жидких органических сред, для чего берут контрольный образец жидкости с действительной и мнимой диэлектрическими проницаемостями, много большими, чем у исследуемого жидкого углеводорода, которые помещают в отдельные переплетенные между собой трубопроводы

Изобретение относится к способам измерений и может быть использовано в сельском хозяйстве, мелиорации, при составлении земельного кадастра и т.п

Изобретение относится к измерительной технике и может быть использовано для измерения влагосодержания, а также других физических свойств (концентрации смеси, плотности) различных материалов и веществ, перемещаемых по ленточным конвейерам, транспортерам

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами

Изобретение относится к области измерительной техники, в частности может быть использовано в спектроскопии диэлектриков для исследования диэлектрических характеристик веществ, знание которых необходимо при дистанционном электромагнитном зондировании, диэлектрическом каротаже, изучении молекулярного строения вещества. В способе измерения комплексной диэлектрической проницаемости жидких и сыпучих тел в широком диапазоне частот в одной ячейке, используемой в диапазоне частот выше 100 МГц как отрезок коаксиальной линии, а в диапазоне ниже 1 МГц как цилиндрический конденсатор, при этом в диапазоне частот выше 100 МГц диэлектрическая проницаемость вычисляется через измеренные значения комплексного коэффициента передачи электромагнитной волны (параметра матрицы рассеяния S12), а в диапазоне частот ниже 1 МГц - через измерение полной проводимости, новым является то, что для измерений в диапазоне частот 0,3-100 МГц используется дополнительный отрезок коаксиальной линии волновым сопротивлением 50 Ом сечения, большего, чем у ячейки, внутренний диаметр внешнего проводника которой определяют по формуле D 1 = d 1 exp ( Z 01 60 ) , где d1 - внешний диаметр корпуса ячейки; Z01 - волновое сопротивление дополнительного отрезка коаксиальной линии, в которой размещена ячейка, при этом ячейку включают как цилиндрический конденсатор в разрыв внутреннего проводника дополнительного отрезка коаксиальной линии, имеющего два СВЧ разъема, к центральным проводникам которых подключены с одной стороны центральный проводник ячейки, а с другой стороны - корпус ячейки через согласующий переходник в виде отрезка конической линии волновым сопротивлением 50 Ом, и производят его калибровку, для чего определяют параметры эквивалентной схемы дополнительного отрезка коаксиальной линии с расположенной в ней пустой ячейкой, затем заполняют ячейку исследуемым веществом и в диапазоне частот 0,3-100 МГц измеряют комплексный коэффициент передачи (параметр матрицы рассеяния S12) и по формулам, связывающим КДП с параметром S12, определяют КДП. Данный способ измерения КДП обеспечивает ее измерение в одной ячейке с низкой погрешностью во всем частотном диапазоне от 1 кГц до 6000 МГц. 9 ил.

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение точности измерения. Устройство для измерения свойства диэлектрического материала содержит генератор электромагнитных колебаний, первый развязывающий элемент, соединенный выходом со входом фазовращателя, передающую и приемную антенны, детектор, подключенный выходом к блоку обработки информации, и аттенюатор. Для достижения технического результата введены первый и второй волноводные тройники и второй развязывающий элемент, причем выход генератора электромагнитных колебаний соединен с первым плечом первого волноводного тройника, второе плечо которого подключено к входу первого развязывающего элемента, выход фазовращателя через аттенюатор соединен с первым плечом второго волноводного тройника, второе плечо которого подключено к приемной антенне, третье плечо второго волноводного тройника соединено со входом детектора, третье плечо первого волноводного тройника через второй развязывающий элемент соединен с передающей антенной. 1 ил.

Изобретение относится к измерительной технике, в частности к измерению влажности волокнистых материалов, и может быть использовано в текстильной и хлопчатобумажной промышленности. Предлагаемый способ включает в себя размещение между двумя электродами пробы волокна, приложение к ним переменного напряжения и контроль тока, проходящего через материал. При этом прессование пробы волокна производят до его объемной плотности материала, превышающей 400 кг/м3, к электродам последовательно прикладывают переменное напряжение с частотой ≤50 Гц и частотой 20-100 кГц, контролируют соответствующие токи (I1 и I2), протекающие между электродами, и определяют значение тока смещения, проходящего через пробу, по формуле: I с м = I 2 2 − I 1 2 − I 0 , где I0 - фоновое значение тока, контролируемое между электродами на частоте 20-100 кГц при отсутствии между электродами волокна, затем находят величину массы воды в исследуемой пробе волокна на основании предварительно установленной зависимости тока смещения от массы воды в волокне. Повышение чувствительности и точности измерения влажности волокна является техническим результатом изобретения. 5 ил., 1 табл.

Изобретение относится к устройству измерения физических свойств жидкости в емкости. Повышение точности измерения является техническим результатом заявленного устройства, которое представляет собой первый рабочий чувствительный элемент в виде первого резонатора - отрезка коаксиальной линии, заполняемого контролируемой жидкостью, между полым внутренним и наружным проводниками которого размещена совокупность одного или более соосных с ними и вложенных один в другой металлических цилиндров, поочередно короткозамкнутых и разомкнутых на одном из их концов, и эталонный чувствительный элемент в виде второго резонатора, заполняемого эталонной жидкостью, являющегося полостью внутреннего проводника первого резонатора, при этом оба резонатора подключены через соответствующие элементы возбуждения и съема колебаний и линии связи этих резонаторов с соответствующими электронными блоками, выходы которых подсоединены к входу функционального преобразователя, подсоединенного выходом к индикатору. Второй резонатор выполнен идентично первому резонатору коаксиальным, при этом его наружным проводником служит внутренняя поверхность полого внутреннего проводника, внутренним проводником - центральный металлический стержень, а между ним и указанным наружным проводником размещена совокупность одного или более соосных с ними и вложенных один в другой металлических цилиндров, поочередно короткозамкнутых и разомкнутых на одном из их концов. 1 ил.

Заявленное изобретение относится к способу определения влажности жидких углеводородов и может найти применение в нефтехимической промышленности, лабораторной практике для контроля качества горюче-смазочных материалов, в частности для экспресс-контроля качества авиационного керосина. Техническим результатом изобретения является повышение чувствительности и уменьшение трудоемкости определения взвешенной влаги в жидком углеводороде. Способ основан на помещении исследуемого углеводорода в сверхвысокочастотное электромагнитное поле и измерении потерь на фиксированной температуре t1, дополнительно после измерений на t1 нагревают исследуемый углеводород в закрытой пробе, далее измеряют в нем потери сверхвысокочастотного электромагнитного поля на второй фиксированной температуре t2, причем t1<t2, при этом фиксированную температуру t1 выбирают не выше 0°C, т.е. t1≤0°C, а разность температур t2-t1 должна быть не менее 50°C, т.е. t2-t1≥50°C, после чего по изменению потерь сверхвысокочастотного электромагнитного поля судят о наличии взвешенной эмульсионной влаги, которая переходит в растворенное состояние. 4 ил.
Наверх