Способ определения сплошности потока жидкости в трубопроводе



Способ определения сплошности потока жидкости в трубопроводе

 


Владельцы патента RU 2483296:

Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН (RU)

Предлагаемое техническое решение относится к измерительной технике. Способ определения сплошности потока жидкости в трубопроводе, при котором воздействуют на поток жидкости электрическим полем, зондируют контролируемый поток электромагнитной волной и принимают прошедшую через поток электромагнитную волну. При этом зондирование потока осуществляют ортогонально силовым линиям электрического поля, измеряют амплитуду электрического поля прошедшей через поток жидкости эллиптически поляризованной волны и по измеренному значению амплитуды электрического поля этой волны определяют сплошность потока жидкости в трубопроводе. Технический результат заключается в упрощении процедуры измерения сплошности потока. 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ измерения сплошности потока жидкости в трубопроводе (см. В.А.Викторов, и др. Радиоволновые измерения параметров технологических процессов, Москва, Энергоиздат, 1989, с.168), в котором информацию о сплошности потока жидкости получают путем сравнения характеристик прошедшей через поток жидкости электромагнитной волны с аналогичными характеристиками зондирующей поток электромагнитной волны.

Недостатком этого способа является погрешность, обусловленная сложностью процедуры сравнения характеристик прошедшей и зондирующей электромагнитных волн.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ определения сплошности потока жидкости в трубопроводе (см. Патент РФ №20908868, Бюл. Изобр. 1997, №26). Суть этого способа заключается в использовании эффекта поляризации электромагнитных волн в потоке жидкости при воздействии на него электрического поля и измерении разности фаз между вышедшими из потока двух поляризованных перпендикулярно и параллельно силовым линиям электрического поля составляющими. Здесь по разности фаз указанных выше составляющих определяют сплошность потока жидкости в трубопроводе.

Недостатком этого известного способа можно считать сложность процедуры измерения информационного параметра, связанную с широким диапазоном изменения разности фаз.

Техническим результатом заявляемого решения является упрощение процедуры измерения сплошности потока.

Технический результат достигается тем, что в способе определения сплошности потока жидкости в трубопроводе, при котором воздействуют на поток жидкости электрическим полем, зондируют контролируемый поток электромагнитной волной и принимают прошедшую через поток электромагнитную волну, зондирование потока осуществляют ортогонально силовым линиям электрического поля, измеряют амплитуду электрического поля прошедшей через поток жидкости эллиптически поляризованной волны и по измеренному значению амплитуды электрического поля этой волны определяют сплошность потока жидкости в трубопроводе.

Сущность заявляемого технического решения, характеризуемого совокупностью указанных выше признаков, состоит в измерении амплитуды электрического поля прошедшей через поток жидкости эллиптически поляризованной волны, возникающей воздействием электрического поля на поток, приводящего к поляризации зондирующей поток электромагнитной волны.

Наличие в заявляемом способе перечисленных существенных признаков позволяет решить поставленную задачу определения сплошности потока жидкости в трубопроводе измерением амплитуды электрического поля прошедшей через поток эллиптически поляризованной электромагнитной волны с желаемым техническим результатом, т.е. упрощением процедуры измерения сплошности потока жидкости в трубопроводе.

На чертеже приведена функциональная схема устройства, реализующего предлагаемый способ.

Устройство, реализующее данное техническое решение, содержит генератор электромагнитных колебаний 1, соединенный выходом с элементом ввода электромагнитной волны 2, элемент вывода электромагнитной волны 3, подключенный ко входу амплитудного детектора 4, соединенный выходом через усилитель 5 со входом измерителя амплитуды электрического поля 6. На чертеже цифрами 7, 8 и 9 обозначены соответственно электроды и трубопровод.

Предлагаемый способ основывается на использовании поляризации электромагнитных волн в потоке жидкости.

Поляризация электромагнитных волн, как правило, возникает в средах, имеющих свойства анизотропии.

Из практики известны среды со свойствами и без свойств анизотропией. При этом большинство сред не обладают анизотропии. В соответствии с этим заявляемый способ направлен на решение задачи определения сплошности потока жидкости жидких диэлектрических сред, не обладающих естественной анизотропией.

Пусть по трубопроводу протекает поток неанизотропной диэлектрической жидкости. В рассматриваемом случае для того чтобы контролируемый поток стал анизотропным, необходимо воздействовать на поток, например электрическим полем (эффект Керра). После этого зондирующая поток волна, направленная перпендикулярно силовым линиям приложенного электрического поля, может поляризоваться в потоке при распространении по нему. В данном случае при поляризации зондирующей волны, в потоке возникают две одинаковые по амплитуде ее составляющие, которые направлены перпендикулярно и параллельно зондирующему полю. При этом для этих составляющих показатели преломления будут изменяться. Все это приведет к тому, что поляризованные параллельно и перпендикулярно зондирующему полю волны (составляющие) будут распространяться по потоку с разной скоростью. В результате такого различия скоростей распространения указанных выше взаимно ортогональных волн, на выходе из потока жидкости между этими волнами образуется разность фаз ψ, которую можно определить как

где l - путь проходимый составляющими (волнами) в анизотропном потоке, λ - длина зондирующей волны, Δn - разность показателей преломления, определяемая выражением:

Δn=ne-no,

где ne - показатель преломления волны с плоскостью поляризации, параллельной силовым линиям электрического поля, no - показатель преломления волны с плоскостью поляризации, перпендикулярной силовым линиям электрического поля.

Известно, что параметр Δn для анизотропных жидких сред зависит от длины зондирующей волны λ, постоянной Керры В и напряженности приложенного электрического поля Е и может быть вычислен как

.

В рассматриваемом случае суперпозиция взаимно перпендикулярных поляризованных волн (составляющих) в потоке жидкости, имеющих разность фаз ψ, приведет к образованию эллиптически поляризованной волны, амплитуда электрического поля которой при выходе из потока жидкости может быть определена как

где Еп - амплитуда электрического поля прошедшей через поток эллиптически поляризованной волны, Ео - амплитуда электрического поля зондирующей поток жидкости волны.

Совместное преобразование выражений (1) и (3) с учетом формулы (2) позволяет записать

Сплошность потока, связанная с физическим состоянием двухкомпонентных сред, например, жидкости и газа, характеризует степень однородности и определяется соотношением (см. В.А.Викторов и др. Высокочастотный метод измерения неэлектрических величин)

где s - сплошность потока, ν1 и ν2 - соответственно объемы жидкости и газа на единице длины трубопровода. Соотношение (5) показывает, что при отсутствии жидкости (s=0) ν1=0 и ν2=max, а при наличии потока жидкости без газовых включений (s=1) ν1=max и ν2=0. Отсюда следует, что по величинам объемов ν1 и ν2, рассчитанных по площади поперечного сечения трубопровода при изменении его внутреннего диаметра от 0 до диаметра d (максимальное значение), можно судить о сплошности газожидкостного потока.

Анализ газожидкостного потока в трубопроводе показывает, что при формировании объема ν1 длина пути l, ого проходимый волной (см. формулу (1)), фактически определяет величину площади поперечного сечения потока. Следовательно, определение длины l, связанной с объемом ν1 на единице длины трубопровода через площадь поперечного сечения потока, даст возможность оценить величину сплошности потока в трубопроводе.

При зондировании потока электромагнитной волной, направленной навстречу потока, заполняющего, например, горизонтальный трубопровод, в формуле (1) вместо l следует использовать соотношение ld/(2d-l). Это вытекает из того факта, что при вертикальном к направлению потока (параллельно зондирующему полю с обратным знаком) заполнении (опорожнении) трубопровода средой, длина l может изменяться от 0 до внутреннего диаметра d трубопровода. В силу этого выражение (4) можно переписать как

Eп=Eocos(πldBE2/(2d-l)).

Последнее выражение показывает, что измерением амплитуды электрического поля прошедшей через поток жидкости эллиптически поляризованной волны через l можно судить о сплошности потока жидкости в трубопроводе. При этом при отсутствии потока (l=0) максимальное значение Еп будет соответствовать нулевой (минимальной) сплошности, а значение Еп, определяемое параметрами d, B и E - максимальной сплошности (полный поток, т.е. l=d).

В устройстве, реализующем предлагаемый способ, для измерения амплитуды электрического поля прошедшей через поток жидкости эллиптически поляризованной волны электромагнитные колебания, генерируемые генератором электромагнитных колебаний 1, с помощью элемента ввода электромагнитной волны 2 направляются в поток жидкости. После этого в измерительном участке трубопровода 9, по которому протекает контролируемая среда, создается электрическое поле при помощи электродов 7 и 8. При этом зондирующее поток электромагнитное поле должно быть перпендикулярным силовым линиям приложенного электрического поля. Под воздействием электрического поля поток жидкости становится анизотропным и в результате поляризации зондирующей волны в потоке в нем образуются ортогональные волны, направленные перпендикулярно и параллельно зондирующему поток полю. Далее прошедшая через поток жидкости эллиптически поляризованная волна принимается элементом вывода электромагнитной волны 3. С выхода последнего сигнал поступает на вход амплитудного детектора 4, где входной сигнал детектируется и далее поступает на вход усилителя 5. После усиления, сигнал поступает в измеритель амплитуды 6, где измеряется амплитуда электрического поля прошедшей через поток жидкости эллиптически поляризованной волны. Здесь по измеренным значениям амплитуды можно судить о сплошности потока жидкости в трубопроводе.

Таким образом, согласно предлагаемому способу на основе проведения измерения амплитуды электрического поля прошедшей через поток жидкости эллиптически поляризованной волны можно обеспечить упрощение процедуры определения сплошности потока жидкости в трубопроводе.

Способ определения сплошности потока жидкости в трубопроводе, при котором воздействуют на поток жидкости электрическим полем, зондируют контролируемый поток электромагнитной волной и принимают прошедшую через поток электромагнитную волну, отличающийся тем, что зондирование потока осуществляют ортогонально силовым линиям электрического поля, измеряют амплитуду электрического поля прошедшей через поток жидкости эллиптически поляризованной волны и по измеренному значению амплитуды электрического поля этой волны определяют сплошность потока жидкости в трубопроводе.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для измерения влагосодержания, а также других физических свойств (концентрации смеси, плотности) различных материалов и веществ, перемещаемых по ленточным конвейерам, транспортерам.

Изобретение относится к способам измерений и может быть использовано в сельском хозяйстве, мелиорации, при составлении земельного кадастра и т.п. .

Изобретение относится к способам определения влажности жидких углеводородов и топлив и может найти применение в экспресс-контроле влажности жидких органических сред, для чего берут контрольный образец жидкости с действительной и мнимой диэлектрическими проницаемостями, много большими, чем у исследуемого жидкого углеводорода, которые помещают в отдельные переплетенные между собой трубопроводы.

Изобретение относится к исследованию и анализу материалов, а именно к способам определения влажности зерна зерновых сельскохозяйственных культур, в том числе подсолнечника, кукурузы и рапса.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к способам измерений и может быть использовано в сельском хозяйстве, мелиорации при составлении земельного кадастра и т.п. .

Изобретение относится к области измерительной техники и может быть использовано для определения объемного содержания нефти (или нефтепродуктов) и воды в потоке водонефтяных эмульсий в трубопроводе, в диапазоне от 0 до 100% по каждой компоненте при любой степени минерализации воды, а также для индикации границ раздела газонефтеводяной смеси в резервуарах.

Изобретение относится к области измерительной техники и может быть использовано для определения объемной доли жидкости в потоке газожидкостной смеси (ГЖС) в рабочих условиях.

Изобретение относится к области измерительной техники, в частности может быть использовано в спектроскопии диэлектриков для исследования диэлектрических характеристик веществ, знание которых необходимо при дистанционном электромагнитном зондировании, диэлектрическом каротаже, изучении молекулярного строения вещества. В способе измерения комплексной диэлектрической проницаемости жидких и сыпучих тел в широком диапазоне частот в одной ячейке, используемой в диапазоне частот выше 100 МГц как отрезок коаксиальной линии, а в диапазоне ниже 1 МГц как цилиндрический конденсатор, при этом в диапазоне частот выше 100 МГц диэлектрическая проницаемость вычисляется через измеренные значения комплексного коэффициента передачи электромагнитной волны (параметра матрицы рассеяния S12), а в диапазоне частот ниже 1 МГц - через измерение полной проводимости, новым является то, что для измерений в диапазоне частот 0,3-100 МГц используется дополнительный отрезок коаксиальной линии волновым сопротивлением 50 Ом сечения, большего, чем у ячейки, внутренний диаметр внешнего проводника которой определяют по формуле D 1 = d 1 exp ( Z 01 60 ) , где d1 - внешний диаметр корпуса ячейки; Z01 - волновое сопротивление дополнительного отрезка коаксиальной линии, в которой размещена ячейка, при этом ячейку включают как цилиндрический конденсатор в разрыв внутреннего проводника дополнительного отрезка коаксиальной линии, имеющего два СВЧ разъема, к центральным проводникам которых подключены с одной стороны центральный проводник ячейки, а с другой стороны - корпус ячейки через согласующий переходник в виде отрезка конической линии волновым сопротивлением 50 Ом, и производят его калибровку, для чего определяют параметры эквивалентной схемы дополнительного отрезка коаксиальной линии с расположенной в ней пустой ячейкой, затем заполняют ячейку исследуемым веществом и в диапазоне частот 0,3-100 МГц измеряют комплексный коэффициент передачи (параметр матрицы рассеяния S12) и по формулам, связывающим КДП с параметром S12, определяют КДП. Данный способ измерения КДП обеспечивает ее измерение в одной ячейке с низкой погрешностью во всем частотном диапазоне от 1 кГц до 6000 МГц. 9 ил.

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение точности измерения. Устройство для измерения свойства диэлектрического материала содержит генератор электромагнитных колебаний, первый развязывающий элемент, соединенный выходом со входом фазовращателя, передающую и приемную антенны, детектор, подключенный выходом к блоку обработки информации, и аттенюатор. Для достижения технического результата введены первый и второй волноводные тройники и второй развязывающий элемент, причем выход генератора электромагнитных колебаний соединен с первым плечом первого волноводного тройника, второе плечо которого подключено к входу первого развязывающего элемента, выход фазовращателя через аттенюатор соединен с первым плечом второго волноводного тройника, второе плечо которого подключено к приемной антенне, третье плечо второго волноводного тройника соединено со входом детектора, третье плечо первого волноводного тройника через второй развязывающий элемент соединен с передающей антенной. 1 ил.

Изобретение относится к измерительной технике, в частности к измерению влажности волокнистых материалов, и может быть использовано в текстильной и хлопчатобумажной промышленности. Предлагаемый способ включает в себя размещение между двумя электродами пробы волокна, приложение к ним переменного напряжения и контроль тока, проходящего через материал. При этом прессование пробы волокна производят до его объемной плотности материала, превышающей 400 кг/м3, к электродам последовательно прикладывают переменное напряжение с частотой ≤50 Гц и частотой 20-100 кГц, контролируют соответствующие токи (I1 и I2), протекающие между электродами, и определяют значение тока смещения, проходящего через пробу, по формуле: I с м = I 2 2 − I 1 2 − I 0 , где I0 - фоновое значение тока, контролируемое между электродами на частоте 20-100 кГц при отсутствии между электродами волокна, затем находят величину массы воды в исследуемой пробе волокна на основании предварительно установленной зависимости тока смещения от массы воды в волокне. Повышение чувствительности и точности измерения влажности волокна является техническим результатом изобретения. 5 ил., 1 табл.

Изобретение относится к устройству измерения физических свойств жидкости в емкости. Повышение точности измерения является техническим результатом заявленного устройства, которое представляет собой первый рабочий чувствительный элемент в виде первого резонатора - отрезка коаксиальной линии, заполняемого контролируемой жидкостью, между полым внутренним и наружным проводниками которого размещена совокупность одного или более соосных с ними и вложенных один в другой металлических цилиндров, поочередно короткозамкнутых и разомкнутых на одном из их концов, и эталонный чувствительный элемент в виде второго резонатора, заполняемого эталонной жидкостью, являющегося полостью внутреннего проводника первого резонатора, при этом оба резонатора подключены через соответствующие элементы возбуждения и съема колебаний и линии связи этих резонаторов с соответствующими электронными блоками, выходы которых подсоединены к входу функционального преобразователя, подсоединенного выходом к индикатору. Второй резонатор выполнен идентично первому резонатору коаксиальным, при этом его наружным проводником служит внутренняя поверхность полого внутреннего проводника, внутренним проводником - центральный металлический стержень, а между ним и указанным наружным проводником размещена совокупность одного или более соосных с ними и вложенных один в другой металлических цилиндров, поочередно короткозамкнутых и разомкнутых на одном из их концов. 1 ил.

Заявленное изобретение относится к способу определения влажности жидких углеводородов и может найти применение в нефтехимической промышленности, лабораторной практике для контроля качества горюче-смазочных материалов, в частности для экспресс-контроля качества авиационного керосина. Техническим результатом изобретения является повышение чувствительности и уменьшение трудоемкости определения взвешенной влаги в жидком углеводороде. Способ основан на помещении исследуемого углеводорода в сверхвысокочастотное электромагнитное поле и измерении потерь на фиксированной температуре t1, дополнительно после измерений на t1 нагревают исследуемый углеводород в закрытой пробе, далее измеряют в нем потери сверхвысокочастотного электромагнитного поля на второй фиксированной температуре t2, причем t1<t2, при этом фиксированную температуру t1 выбирают не выше 0°C, т.е. t1≤0°C, а разность температур t2-t1 должна быть не менее 50°C, т.е. t2-t1≥50°C, после чего по изменению потерь сверхвысокочастотного электромагнитного поля судят о наличии взвешенной эмульсионной влаги, которая переходит в растворенное состояние. 4 ил.

Изобретение относится к способам определения влажности. Оно может найти применение в нефтехимической промышленности, в частности для экспресс-контроля качества авиационных керосинов в условиях аэродрома. Техническим результатом предлагаемого изобретения является повышение чувствительности определения объемной концентрации осажденной влаги в жидких углеводородах. Данный технический результат достигается тем, что в известном способе определения объемной концентрации осажденной влаги в жидких углеводородах, заключающемся в помещении исследуемого жидкого углеводорода в полость цилиндрического объемного резонатора с продольной осью, перпендикулярной горизонту жидкости, удалении через время t≥10 с жидкого углеводорода из полости резонатора с оставлением влаги, возбуждении электромагнитного колебания типа H011, измерении изменения добротности, вызванного наличием осажденной влаги, дополнительно исследуемый жидкий углеводород через открытую верхнюю торцевую стенку помещают в полость резонатора над диэлектрической пластиной-основанием, расположенной симметрично относительно середины длины, с диаметром, равным диаметру резонатора, и толщиной, много меньшей его высоты, при этом ось пластины-основания совмещают с осью цилиндрического объемного резонатора, после удаления исследуемого жидкого углеводорода с оставлением влаги, капли влаги прижимают диэлектрической пластиной, закрывают верхнюю торцевую стенку, диаметр прижимной диэлектрической пластины выбирают равным диаметру резонатора, а толщину - на порядок меньше толщины диэлектрической пластины-основания. 7 ил.

Предлагаемое изобретение относится к способам определения влажности. Оно может найти применение в нефтехимической промышленности, и в частности, для экспресс-контроля качества авиационных керосинов в условиях аэродрома. Техническим результатом изобретения является повышение чувствительности и реализация возможности ее изменения при определении объемной концентрации осажденной влаги в жидких углеводородах. Указанный технический результат достигается тем, что в способе определения объемной концентрации осажденной влаги в жидких углеводородах, заключающемся в полном заполнении исследуемой жидкостью цилиндрического объемного резонатора с продольной осью, перпендикулярной горизонту, удалении через время t≥10 сек жидкости из полости резонатора с оставлением влаги, возбуждении электромагнитного колебания типа Н011, оценке по изменению добротности цилиндрического объемного резонатора объемной концентрации осажденной влаги, дополнительно, на нижней-торцевой стенке устанавливают диэлектрик высотой h, с диэлектрической проницаемостью εд и диаметром, равным диаметру резонатора, при удалении исследуемой жидкости влагу оставляют на поверхности диэлектрика, при этом варьируя отношение , возможно изменение диапазона измерений при сохранении высокой чувствительности к объемной концентрации осажденной влаги, где l - длина резонатора. 1 з.п. ф-лы, 6 ил.

Влагомер // 2572087
Влагомер относится к измерительной технике и может быть использован для контроля влажности материалов путем измерения комплексной диэлектрической проницаемости. Влагомер содержит перестраиваемый по частоте генератор гармонического сигнала, электронное устройство управления генератором, устройство измерения, первичный преобразователь, образованный внешним экранным и сигнальным проводниками, измерительную ячейку, включенную между выходом генератора и входом первичного преобразователя. Измерительная ячейка содержит резистор, первый вывод которого соединен с выходом генератора, а второй вывод соединен с входом первичного преобразователя, первый детектор, подключенный к первому выводу резистора, второй детектор, подключенный ко второму выводу резистора, выходы детекторов подключены к устройству измерения. Техническим результатом является повышение точности, обеспечение независимости измерений от плотности материала при малых влажностях. 2 з.п. ф-лы,1 ил.

Изобретение относится к области измерительной электротехники, а именно к влагомеру для контроля влажности жидких и сыпучих материалов путем измерения их диэлектрической проницаемости. Влагомер содержит электронный блок, измерительную ячейку и первичный преобразователь высокочастотного сигнала, образованный металлическим основанием и металлическим прутком. В качестве металлического основания применен бункер, трубопровод или лоток. На первом конце прутка закреплен изолятор, пруток вторым концом соединен с основанием. На изоляторе закреплен металлический корпус, внутри которого установлена измерительная ячейка. В первом варианте влагомера на основании установлена металлическая бобышка, выполненная в виде стакана с отверстием в его дне. Корпус с измерительной ячейкой установлен внутри стакана и прижат крышкой-фиксатором к дну стакана. Во втором варианте влагомера на основании закреплены резьбовые шпильки, а корпус с измерительной ячейкой прижат к основанию пластиной с посадочными отверстиями под шпильки и закреплен гайками. Техническим результатом является повышение точности и стабильности измерений в промышленных условиях эксплуатации, обеспечение возможности демонтажа и установки зонда влагомера без изменения настроек. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к области подповерхностной радиолокации и контроля насыпи железных дорог и автодорог. Влажность, загрязненность и толщину слоев насыпи определяют с помощью георадара. В составе насыпи железной или автодороги применяют один или несколько слоев отражательного геотекстиля. Отражательный геотекстиль включает электропроводящие элементы. Измеряют электромагнитные сигналы георадара, отраженные от электропроводящих элементов геотекстиля. Результаты численно обрабатывают на ЭВМ. Затухание отраженных электромагнитных сигналов определяют по амплитуде, а показатель преломления - по скорости сигналов. Влажность насыпи определяют по показателю преломления, а загрязненность - по показателю преломления и затуханию сигналов. Толщину и влажность слоев слоисто-неоднородной насыпи определяют по форме годографа отраженных сигналов. Способ является бесконтактным, неразрушающим, быстрым и эффективным. Технический результат заключается в увеличении эффективности и качества обследования насыпи, повышении безопасности на железных дорогах и автодорогах. 10 з.п. ф-лы, 5 ил.
Наверх