Проводниковый термостойкий сплав на основе алюминия



Проводниковый термостойкий сплав на основе алюминия
Проводниковый термостойкий сплав на основе алюминия

 


Владельцы патента RU 2441090:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (RU)
Открытое акционерное общество "Кирскабель" (RU)

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий электротехнического назначения, в частности проводов высоковольтных ЛЭП. Сплав на основе алюминия содержит компоненты при следующем соотношении, мас.%: цирконий 0,3-0,7, железо 0,1-0,6, кремний 0,04-0,2, церий 0,005-0,2, алюминий и примеси остальное, и характеризуется структурой, представляющей собой матрицу, образованную алюминиевым твердым раствором, в котором равномерно распределены наночастицы фазы Al3Zr с кубической решеткой Ll2, имеющие средний размер не более 20 нм, и равномерно распределенные в матрице железосодержащие частицы, имеющие средний размер не более 3 мкм. Техническим результатом является создание сплава на основе алюминия, обладающего улучшенным сочетанием прочности, термостойкости и электропроводности, в том числе после длительных нагревов, в частности составляющих 100 часов при температурах до 300°С включительно. 5 з.п. ф-лы, 4 ил., 3 табл.

 

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий электротехнического назначения, в частности проводов высоковольтных ЛЭП, предназначенных для эксплуатации в районах со сложными климатическими условиями и обладающих необходимым комплексом механических, электрических и технологических свойств, в том числе после нагревов до 300°С.

Алюминий, обладая высокой электропроводностью, малой плотностью и хорошей коррозионной стойкостью, широко применяется в изделиях электролитического назначения. В частности, алюминиевая проволока используется для изготовления проводов высоковольтных воздушных ЛЭП. Поскольку добавление других элементов в той или иной степени снижает электропроводность, то проволоку делают из технического алюминия (А5Е или А7Е) или из низколегированных сплавов системы Al-Si-Mg, в частности, марки ABE. Проволока из технического алюминия в нагартованном состоянии обеспечивает удачное сочетание прочности (временного сопротивления - σв и предела текучести σ0,2) и удельного электросопротивления (ρ). У сплавов типа ABE более высокая прочность, но худшая электропроводность. Недостатком нелегированного алюминия типа А5Е и сплавов типа ABE является низкая термическая стабильность, т.к. они сильно разупрочняются при нагревах свыше ~200°С.

Существенного повышения термической стабильности алюминиевых сплавов, предназначенных для электротехнического применения (в частности, алюминиевой проволоки), можно добиться за счет введения добавки циркония.

Наиболее близким сплавом к предложенному является проводниковый термостойкий сплав на основе алюминия (High conductive heat-resistant aluminum alloy), раскрытый в патенте US 4402763. Этот сплав содержит цирконий в количестве 0,23-0,35%, а технология получения из него проволоки включает: плавку, получение литой заготовки (cast bar), горячую прокатку литой заготовки, получение проволоки холодным волочением, старение проволоки в температурном интервале от 310° до -390°С в течение 50-400 часов и последующую холодную деформационную обработку со степенью обжатия не более 30%. Цель обработки состоит в формировании структуры, в которой дисперсные частицы фазы Al3Zr равномерно распределены в алюминиевой матрице. В результате достигается проводимость не ниже 58% IACS, прочность не ниже, чем у нелегированного алюминия марки АА1350 (в виде проволоки).

Недостатком данного сплава является высокое удельное электросопротивление (электропроводимость 58% IACS соответствует 29,3·10-9 Ом·м).

Задачей изобретения является создание нового проводникового термостойкого сплава на основе алюминия с добавкой циркония, который обеспечивал бы улучшенное сочетание прочности, термостойкости и электропроводности:

- в виде проволоки:

1) механические свойства после 100-часового нагрева при 300°С: временное сопротивление разрыву (σв) не ниже 150 МПа, предел текучести (σ0,2) не ниже 120 МПа, относительное удлинение (δ) не ниже 10%;

2) удельное электрическое сопротивление (ρ) не выше 29·10-9 Ом·м, в том числе после 100-часового нагрева при 300°С;

- в виде тонколистового проката:

1) механические свойства после 100-часового нагрева при 300°С: временное сопротивление разрыву (σв) не ниже 140 МПа, предел текучести (σ0,2) не ниже 110 МПа, относительное удлинение (δ) не ниже 10%;

2) удельное электрическое сопротивление (ρ) не выше 29·10-9 Ом·м, в том числе после 100-часового нагрева при 300°С.

Поставленная задача решена тем, что проводниковый термостойкий сплав на основе алюминия, содержащий цирконий и кремний, отличается тем, что он дополнительно содержит железо и церий при следующем соотношении компонентов, мас.%:

Цирконий 0,3-0,7
Железо 0,1-0,6
Кремний 0,04-0,2
Церий 0,005-0,2
алюминий и примеси остальное

и характеризуется структурой, представляющей собой матрицу, образованную алюминиевым твердым раствором, в котором равномерно распределены наночастицы фазы Al3Zr с кубической решеткой Ll2, имеющие средний размер не более 20 нм (фигура 1), и равномерно распределенные в матрице железосодержащие частицы, имеющие средний размер не более 3 мкм (фигура 2).

Материал может быть выполнен в виде проволоки или тонколистового проката.

Сплав в виде проволоки обладает следующими свойствами на растяжение при комнатной температуре: временное сопротивление (σв) - не менее 160 МПа, предел текучести (σ0,2) - не менее 130 МПа, относительное удлинение (δ) - не менее 5%.

Сплав в виде тонколистового проката обладает следующими свойствами на растяжение при комнатной температуре: временное сопротивление (σв) - не менее 150 МПа, предел текучести (σ0,2) - не менее 130 МПа, относительное удлинение (δ) - не менее 4%.

Сплав в виде проволоки после 100-часового нагрева при 300°С при комнатной температуре обладает следующими свойствами на растяжение: временное сопротивление (σв) - не менее 150 МПа, предел текучести (σ0,2) - не менее 120 МПа, относительное удлинение (δ) - не менее 10%.

Сплав в виде тонколистового проката после 100-часового нагрева при 300°С при комнатной температуре обладает следующими свойствами на растяжение: временное сопротивление (σв) - не менее 140 МПа, предел текучести (σ0,2) - не менее 110 МПа, относительное удлинение (δ) - не менее 10%.

Удельное электросопротивление сплава (ρ) в виде проволоки и тонколистового проката при комнатной температуре не превышает 29·10-9 Ом·м.

Сущность изобретения состоит в следующем. Наличие циркония в заявленных пределах позволяет обеспечить наилучшее сочетание механических свойств, электросопротивления и термостойкости за счет вторичных выделений (дисперсоидов) фазы Al3Zr (фигура 1). Избыток циркония (>0,7%) приводит к снижению пластичности и росту электросопротивления, а его недостаток (<0,3%) - к снижению прочности. Наличие железа в заявленных пределах позволяет обеспечить необходимое количество компактных частиц, преимущественно фазы Al8Fe2Si (фигура.2), что благоприятно сказывается на прочности и технологичности при литье и волочении. Избыток железа (>0,6%) приводит к снижению пластичности, а его недостаток (<0,3%) - снижению прочности и технологичности. Наличие кремния в заявленных пределах и при оптимальном соотношении с другими элементами позволяет обеспечить связывание железа в фазу Al8Fe2Si. Избыток кремния (>0,2%) приводит к росту электросопротивления и снижению термостойкости, а его недостаток (<0,04%) - к снижению прочности. Наличие церия в заявленных пределах и при оптимальном соотношении с другими элементами позволяет обеспечить минимальную концентрацию кремния в алюминиевом твердом растворе, что благоприятно сказывает на электропроводности. Избыток церия (>0,2%) приводит к снижению пластичности, а его недостаток (<0,005%) - к снижению электропроводности.

ПРИМЕР 1

Были приготовлены слитки 6 сплавов, составы которых указаны в табл.1. Сплавы готовили в электрической печи сопротивления в графитошамотных тиглях из алюминия марки А99 (99,99%), кремния марки Кр00 (99,0%), церия (99,0%) и лигатур, содержащих железо и цирконий. Из сплавов были получены цилиндрические слитки диаметром 44 мм. Температура расплава в процессе приготовления составляла 900°С, при литье - 870°С. Из слитков прокаткой были получены прутковые заготовки. Далее прутковые заготовки отжигали, после чего проводили холодное волочение до диаметра 3 мм. Полученную проволоку отжигали по режиму 300°С, 100 ч.

Таблица 1
Составы экспериментальных сплавов
Концентрации, % по массе
Zr Fe Si Се Al
1 0,2 0,05 0,01 0,001 Основа
2 0,3 0,1 0,06 0,005 Основа
3 0,5 0,4 0,1 0,01 Основа
4 0,7 0,6 0,2 0,2 Основа
5 0,8 0,8 0,3 0,3 Основа
6 0,3 <0,01 <0,01 0 Основа
Таблица 2
Свойства экспериментальных сплавов (проволока, диаметр 3 мм)
Исходные свойства После 100-часового нагрева при 300°С
σв, МПа σ0,2, МПа δ, % ρ, 10-9 Ом·м σв, МПа σ0,2, МПа δ, % ρ, 10-9 Ом·м
1 160 150 7 29,2 115 105 16 28,5
2 165 155 6 28,8 155 130 12 28,6
3 190 180 5 29,0 170 155 11 28,9
4 210 195 5 29,0 180 165 10 28,9
5 165 155 4 29,5 140 115 7 29,2
6 165 150 7 29,6 150 135 14 29,3

Результаты механических испытаний проволоки отражены в табл.2, из которой видно, что только заявляемый сплав (составы 2-4) обеспечивает требуемые значения прочности, пластичности и удельного электросопротивления в нагартованном состоянии и после 100-часового нагрева при 300°С. В сплаве 1 значения σв и σ0,2 ниже требуемого уровня после 100-часового нагрева при 300°С. В сплаве составов 5, 6 значение ρ выше требуемого уровня в нагартованном состоянии.

ПРИМЕР 2

Были приготовлены слитки 6 сплавов, составы которых указаны в табл.1. Сплавы готовили в электрической печи сопротивления в графитошамотных тиглях из алюминия марки А99 (99,99%), кремния марки Кр00 (99,0%), церия (99,0%) и лигатур, содержащих железо и цирконий. Из сплавов были получены плоские слитки с сечением 15×60 мм. Температура расплава в процессе приготовления составляла 900°С, при литье - 870°С. Из слитков прокаткой были получены листы. Далее листы отжигали и после этого проводили дальнейшую прокатку до толщины листа 0,7 мм. Отжиг листов проводили по режиму 300°С, 100 ч.

Таблица 3
Свойства экспериментальных сплавов (лист толщиной 0,7 мм)
Исходные свойства После 100-часового нагрева при 300°С
σв, МПа σ0,2, МПа δ, % ρ, 10-9 Ом·м σв, МПа σ0,2, МПа δ, % ρ, 10-9 Ом·м
1 145 140 6 29,4 95 60 16 28,5
2 160 155 5 28,9 145 130 14 28,6
3 180 170 4 29,0 160 140 12 28,9
4 200 185 4 29,0 175 150 11 28,9
5 160 150 2 29,5 120 100 4 29,2
6 160 145 4 29,6 135 125 11 29,3

Результаты механических испытаний листов отражены в табл.2, из которой видно, что только заявляемый сплав (составы 2-4) обеспечивает требуемые значения прочности, пластичности и удельного электросопротивления в нагартованном состоянии и после 100-часового нагрева при 300°С. В сплаве 1 значения σв и σ0,2 ниже требуемого уровня после 100-часового нагрева при 300°С. В сплаве составов 5 и 6 значение ρ выше требуемого уровня в нагартованном состоянии.

1. Проводниковый термостойкий сплав на основе алюминия, содержащий цирконий и кремний, отличающийся тем, что он дополнительно содержит железо и церий при следующем соотношении компонентов, мас.%:

Цирконий 0,3-0,7
Железо 0,1-0,6
Кремний 0,04-0,2
Церий 0,005-0,2
Алюминий и примеси Остальное,

и характеризуется структурой, представляющей собой матрицу, образованную алюминиевым твердым раствором, в котором равномерно распределены наночастицы фазы Al3Zr с кубической решеткой Ll2, имеющие средний размер не более 20 нм, и равномерно распределенные в матрице железосодержащие частицы, имеющие средний размер не более 3 мкм.

2. Сплав по п.1, отличающийся тем, что он получен в виде проволоки, обладающей следующими свойствами на растяжение при комнатной температуре: временное сопротивление (σв) - не менее 160 МПа, предел текучести (σ0,2) - не менее 130 МПа, относительное удлинение (δ) - не менее 5%.

3. Сплав по п.1, отличающийся тем, что он получен в виде тонколистового проката, обладающего следующими свойствами на растяжение при комнатной температуре: временное сопротивление (σв) - не менее 150 МПа, предел текучести (σ0,2) - не менее 130 МПа, относительное удлинение (δ) - не менее 4%.

4. Сплав по п.2, отличающийся тем, что после 100 часового нагрева при 300°С проволоки при комнатной температуре сплав обладает следующими свойствами на растяжение: временное сопротивление (σв) - не менее 150 МПа, предел текучести (σ0,2) - не менее 120 МПа, относительное удлинение (δ) - не менее 10%.

5. Сплав по п.3, отличающийся тем, что после 100 часового нагрева при 300°С тонколистового проката при комнатной температуре сплав обладает следующими свойствами на растяжение: временное сопротивление (σв) - не менее 140 МПа, предел текучести (σ0,2) - не менее 110 МПа, относительное удлинение (δ) - не менее 10%.

6. Сплав по любому из пп.1-5, отличающийся тем, что его удельное электросопротивление (ρ) при комнатной температуре не превышает 29·10-9 Ом·м.



 

Похожие патенты:

Изобретение относится к сваренным кузнечным способом изделиям и конструкционным элементам из алюминиевого сплава, в частности для авиастроения. .
Изобретение относится к области порошковой металлургии, в частности спеченным высокопрочным композиционным материалам на основе алюминия, используемым в качестве конструкционных материалов в авиакосмической и транспортной промышленности.

Изобретение относится к металлургической промышленности и может быть использовано в литейном производстве для модифицирования чугуна и силумина. .
Изобретение относится к технологии производства алюминиево-кремниевых сплавов. .
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам системы алюминий-магний, используемым для сварных конструкций в судостроении, авиакосмической технике и транспортном машиностроении.

Изобретение относится к литейному производству, а именно к модифицированию доэвтектических алюминиево-кремниевых сплавов. .
Изобретение относится к технологии получения сплавов с использованием кристаллического кремния, например алюминиево-кремниевых сплавов. .
Изобретение относится к цветной металлургии, а именно к технологии производства алюминиевых сплавов и лигатур со скандием или другими легирующими металлами марганцем, цирконием, титаном, бором, ниобием.

Изобретение относится к сплавам на основе алюминия, а именно к Аl-Zn-Cu-Mg сплавам на основе алюминия, а также способу изготовления катаного или кованого деформированного продукта из него и к самому катаному или кованому деформированному продукту.
Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, используемым в качестве конструкционного материала в деталях, работающих при повышенных температурах.

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении деталей автомобильных двигателей, работающих под действием высоких нагрузок при температурах до 150-200°С: головки цилиндров, корпуса водяных насосов, впускные трубы и др
Изобретение относится к области металлургии и может быть использовано при получении паяных конструкций из алюминия и его сплавов
Изобретение относится к области металлургии металлических материалов с высокими антифрикционными и прочностными свойствами, используемыми при изготовлении подшипников скольжения
Изобретение относится к области металлургии металлических материалов с высокими антифрикционными и прочностными свойствами, используемыми при изготовлении подшипников скольжения
Изобретение относится к области металлургии металлических материалов с высокими антифрикционными и прочностными свойствами, используемыми при изготовлении подшипников скольжения

Изобретение относится к металлургии и может быть использовано при производстве полуфабрикатов в виде поковок, штамповок, прессованных прутков и профилей, катаных плит и листов из высокопрочных сплавов системы Al-Zn-Mg-Cu, предназначенных для применения в силовых конструкциях авиакосмической техники и транспортных средств, к которым предъявляются повышенные требования по прочности, трещиностойкости, усталостной долговечности, коррозионной стойкости
Изобретение относится к сплаву серии АА7000 и к способу изготовления продуктов из этого алюминиевого сплава, а именно к алюминиевым деформированным продуктам относительно большой толщины, в частности от 30 до 300 мм

Изобретение относится к области металлургии, в частности к деформируемым материалам на основе алюминия, и может быть использовано при получении изделий, работающих при повышенных температурах до 350°С
Изобретение относится к области металлургии и может быть использовано при изготовлении вкладышей подшипников скольжения
Наверх