Сталь


 


Владельцы патента RU 2441939:

Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" (RU)

Изобретение относится к металлургии, а именно к сталям, используемым при изготовлении крупногабаритных сварных сосудов давления, например корпусов парогенераторов, гидроемкостей, компенсаторов объема, паропроводов. Сталь содержит углерод, кремний, марганец, никель, молибден, ванадий, хром, медь, серу, фосфор, азот, алюминий, кальций, олово, мышьяк, титан, водород, сурьму и железо при следующем соотношении компонентов, мас.%: углерод 0,08-0,12, кремний 0,10-0,25, марганец 0,70-1,10, никель 1,8-2,3, молибден 0,30-0,70, ванадий 0,03-0,07, хром 0,01-0,25, медь 0,01-0,25, сера 0,001-0,008, фосфор 0,001-0,010, олово 0,001-0,008, мышьяк 0,001-0,008, сурьма 0,001-0,008, алюминий 0,01-0,05, кальций 0,0005-0,008, титан 0,01-0,05, водород 0,0001-0,0002, азот 0,003-0,012, железо остальное. Содержания фосфора, сурьмы, олова и мышьяка определяются следующим соотношением (10·P+5·Sb+4·Sn+As)·100≤12. Сталь обладает высоким сопротивлением к хрупкому статическому и циклическому разрушению, стойка к флокенообразованию, водородному и примесному охрупчиванию. 2 табл.

 

Изобретение относится к металлургии, в частности к сталям для сварных конструкций, используемых при изготовлении крупногабаритных сварных сосудов давления, например корпусов парогенераторов, гидроемкостей, компенсаторов объема, паропроводов.

Известна сталь, содержащая углерод, кремний, марганец, никель, молибден, ванадий, алюминий, азот, хром, медь, серу, фосфор и железо при следующем соотношении компонентов, мас.%:

Углерод 0,08-0,11
Кремний 0,17-0,37
Марганец 0,60-1,40
Никель 1,70-2,70
Молибден 0,35-0,60
Ванадий 0,03-0,07
Алюминий 0,02-0,07
Азот 0,005-0,012
Хром ≤0,03
Медь ≤0,02
Сера ≤0,02
Фосфор 0,018
Железо Остальное

(SU554702, С22С 38/12, опубликовано 30.03.1978)

Наиболее близкой по технической сущности и достигаемому техническому результату является сталь, содержащая углерод, кремний, марганец, никель, молибден, ванадий, хром, медь, серу, фосфор, олово, мышьяк, алюминий, кальций, азот и железо при следующем соотношении компонентов, мас.%:

Углерод 0,08-0,14
Кремний 0,10-0,37
Марганец 0,60-1,40
Никель 1,70-2,70
Молибден 0,40-0,70
Ванадий 0,03-0,07
Хром ≤0,20
Медь ≤0,20
Сера ≤0,02
Фосфор 0,008-0,015
Олово 0,001-0,005
Мышьяк 0,003-0,008
Алюминий 0,02-0,07
Кальций 0,005-0,15
Азот 0,005-0,012
Железо Остальное

Содержание никеля, марганца и фосфора определяется следующим соотношением: (Ni+Мn)·Р<0,037 мас.%.

Однако известные стали не обладают требуемым уровнем сопротивления хрупкому статическому и циклическому разрушению, склонны к флокенообразованию, а также водородному и примесному охрупчиванию, что, в конечном счете, ведет к увеличению длительности изготовления сосудов давления, к снижению надежности и уменьшению сроков эксплуатации.

Стали для изготовления крупногабаритных сварных сосудов давления должны обладать требуемыми уровнями прочностных и пластических характеристик в больших сечениях, высокими характеристиками по свариваемости (невысокими температурами предварительного и сопутствующих подогревов, стабильность свойств в околошовной зоне), минимальным уровнем остаточных напряжений, отсутствием поводок и короблений, низкой склонностью к охрупчиванию в процессе длительной эксплуатации при температурах 350-450°С. Поэтому в известных сталях контролируют содержание никеля, марганца (по верхнему пределу 2,7 и 1,4 мас.% соответственно), а также примесей, ответственных за охрупчивание: фосфора, сурьмы, мышьяка и олова.

Известно отрицательное влияние фосфора, сурьмы, олова и мышьяка на охрупчивание, которое усиливается в присутствии марганца и никеля. Поэтому необходима многопараметрическая оптимизация состава стали по необходимому минимальному содержанию легирующих элементов для обеспечения требуемых механических и служебных характеристик. Кроме того, необходимо определить допустимое содержание водорода, присутствие которого в результате образования флокенов негативно влияет на сопротивление статическому и циклическому разрушению, и нивелировать это негативное влияние.

Задачей и техническим результатом изобретения является создание экономнолегированной стали с повышенным сопротивлением статическому и циклическому разрушению, имеющей полный иммунитет к флокенообразованию, водородному и примесному охрупчиванию. Технический результат достигается тем, что сталь содержит углерод, кремний, марганец, никель, молибден, ванадий, хром, медь, серу, фосфор, олово, мышьяк, сурьму, алюминий, кальций, титан, водород, азот и железо при следующем соотношении компонентов, мас.%:

Углерод 0,08-0,12
Кремний 0,10-0,25
Марганец 0,70-1,10
Никель 1,80-2,30
Молибден 0,30-0,70
Ванадий 0,03-0,07
Хром 0,01-0,25
Медь 0,01-0,25
Сера 0,001-0,008.
Фосфор 0,001-0,010
Олово 0,001-0,008
Мышьяк 0,001-0,008
Сурьма 0,001-0,008
Алюминий 0,01-0,05
Кальций 0,0005-0,008
Титан 0,01-0,05
Водород 0,0001-0,0002
Азот 0,003-0,012
Железо Остальное,

при этом суммарное содержание фосфора, сурьмы, олова и мышьяка определяется следующим соотношением:

(10·Р+5·Sb+4·Sn+As)·100<12.

Достижение поставленного технического результата иллюстрируется данными, представленными в таблицах 1 и 2. При изготовлении образцов для испытаний был использован аналогичный способ получения известной стали и стали по изобретению. Имитацию длительного температурного воздействия проводили при температуре 350°С. Все стали подвергали охлаждение со скоростью, моделирующей закалку в воде поковки сечением 200 мм, и отпуску при температуре 650°С.

Результаты оценки механических свойств и малоцикловой усталости (таблица 2) показали более высокий уровень пластических характеристик (относительное удлинение и сужение), вязкости (температура хрупко-вязкого перехода ТК0. температурный перепад ΔТК), а также большее число циклов до разрушения стали по изобретению.

Таблица 1
Химических состав сравниваемых сталей
Содержание элементов, мас.% Заявленная сталь Сталь известная
Состав 1 Состав 2 Состав 3 Состав 4
углерод 0,10 0,08 0,10 0,08
кремний 0,20 0,15 0,30 0,15
марганец 1,0 0,9 1,0 0,91
никель 2,1 1,9 2,0 1,8
молибден 0,5 0,4 0,45 0,6
ванадий 0,05 0,07 0,07 0,06
хром 0,15 0,20 0,17 0,14
медь 0,1 0,15 0,15 0,12
сера 0,005 0,007 0,01 0.008
фосфор 0,005 0,007 0,010 0,008
олово 0,003 0,005 0,003 0,001
мышьяк 0,002 0,004 0,004 0,006
сурьма 0,003 0,005 - -
алюминий 0,030 0,025 0,035 0,030
кальций 0,005 0,005 0,006 0,0089
титан 0,025 0,025 - -
водород 0,0001 0,0002 0,0003 0,0004
азот 0,008 0,007 0,008 0,010
железо остальное остальное остальное остальное
10·Р+5·Sb+4·Sn+As)·100 7,9 11,9 11,6 9,0
Таблица 2
Служебные характеристики сравниваемых сталей
Сталь Состав 1 Состав 2 Состав 3 Состав 4
Служебные характерис-
тики
Температура испытаний, °С
σ0,2, кгс/мм2 20 42 43 42 45
350 36 35 34 32
σв кгс/мм2 20 61 62 62 64
350 56 57 58 57
δ, % 20 29 29 22 18
350 26 25 19 16
Ψ, % 20 80 78 68 61
350 75 73 60 57
KCV, кгс·м/см2 20 15,6 17,4 7,5 6,3
350 20,5 22,1 12,3 10,2
ТК0 исходное, °С -20 -15 0 +10
ΔТК (после старения 5000 часов при температуре 350 °С) 0 0 15 25
Скорость роста трещины V, мм/цикл (после старения 5000 часов при температуре 350°С) 1·10-5 1,2·10-5 7·10-5 1,1·10-5

Сталь, содержащая углерод, кремний, марганец, никель, молибден, ванадий, хром, медь, серу, фосфор, азот, алюминий, кальций, олово, мышьяк и железо, отличающаяся тем, что она дополнительно содержит титан, водород и сурьму при следующем соотношении компонентов, мас.%:

углерод 0,08-0,12
кремний 0,10-0,25
марганец 0,70-1,10
никель 1,8-2,3
молибден 0,30-0,70
ванадий 0,03-0,07
хром 0,01-0,25
медь 0,01-0,25
сера 0,001-0,008
фосфор 0,001-0,010
олово 0,001-0,008
мышьяк 0,001-0,008
сурьма 0,001-0,008
алюминий 0,01-0,05
кальций 0,0005-0,008
титан 0,01-0,05
водород 0,0001-0,0002
азот 0,003-0,012
железо остальное,

при этом суммарное содержание фосфора, сурьмы, олова и мышьяка определяется следующим соотношением (10·P+5·Sb+4·Sn+As)·100≤12.



 

Похожие патенты:
Изобретение относится к области металлургии, а именно к получению стали, используемой для изготовления деталей, состоящих из по меньшей мере двух частей, способных разделяться надламыванием, используемых в автомобилестроении.

Изобретение относится к области металлургии, а именно к составам сталей, используемых для изготовления режущих инструментов. .
Изобретение относится к области металлургии, а именно к составу конструкционной низколегированной литейной стали, используемой для изготовления ответственных деталей, работающих при циклических и изменяющихся нагрузках.
Изобретение относится к изготовлению слитков для крупных цельнокованых изделий из стали, например валов, роторов паровых турбин высокого, среднего и низкого давления, работающих в стационарных режимах при температурах до 550°С.

Изобретение относится к области металлургии, а именно к изготовлению стальных деталей, используемых в качестве конструкционных компонентов машин. .
Изобретение относится к области металлургии, а именно к составу стали, используемой для изготовления деталей распределителей зажигания автомобильных карбюраторных двигателей методом механической и термической обработки.

Изобретение относится к области металлургии, а именно к горячештампованной микролегированной стали, используемой в автомобильной промышленности. .

Изобретение относится к области металлургии, а именно к составу жаропрочной стали, предназначенной для изготовления элементов тепловых энергоблоков, работающих при температуре до 650°С, в частности труб поверхностей нагрева пароперегревателей и паропроводов.

Изобретение относится к области металлургии, а именно к получению ковкой стали, обладающей прекрасной деформируемостью при ковке. .
Изобретение относится к области металлургии, а именно к конструкционным низколегированным литейным сталям, используемым для изготовления ответственных деталей машин и механизмов с толщиной стенок до 50 мм, работающих при ударных и циклических изменяющихся нагрузках и в условиях трения.

Изобретение относится к области металлургии, а именно к изготовлению стальных деталей, используемых в качестве конструкционных компонентов машин. .

Изобретение относится к области металлургии. .

Изобретение относится к области металлургии, а именно к высокопрочной листовой стали с покрытием, полученным горячим погружением, и может быть использовано для изготовления автомобильных топливных баков.

Изобретение относится к области металлургии, а именно к производству высокопрочной толстостенной сварной стальной трубы для трубопроводов сырой нефти и природного газа.

Изобретение относится к области металлургии, а именно к получению высокопрочной сварной стальной трубы для трубопровода. .

Изобретение относится к области производства труб, в частности коленчатой трубы. .

Изобретение относится к области металлургии, а именно к производству листов из высокопрочной стали, применяемых в автомобильной промышленности. .

Изобретение относится к области металлургии, а именно к производству плит и конструкционных деталей, применяемых в автомобильной промышленности. .
Изобретение относится к области металлургии, к особохладостойким конструкционным сталям, используемым для изготовления оборудования, предназначенного для хранения и транспортировки сжиженного природного газа.
Изобретение относится к области черной металлургии, а именно к составам литых сплавов, используемых для изготовления деталей песковых и грязевых насосов, мельниц и дробилок.
Наверх