Способ очистки полимеризационного оборудования от труднорастворимых отложений высокомолекулярного полимера (варианты)



Способ очистки полимеризационного оборудования от труднорастворимых отложений высокомолекулярного полимера (варианты)
Способ очистки полимеризационного оборудования от труднорастворимых отложений высокомолекулярного полимера (варианты)
Способ очистки полимеризационного оборудования от труднорастворимых отложений высокомолекулярного полимера (варианты)
Способ очистки полимеризационного оборудования от труднорастворимых отложений высокомолекулярного полимера (варианты)
Способ очистки полимеризационного оборудования от труднорастворимых отложений высокомолекулярного полимера (варианты)
Способ очистки полимеризационного оборудования от труднорастворимых отложений высокомолекулярного полимера (варианты)
Способ очистки полимеризационного оборудования от труднорастворимых отложений высокомолекулярного полимера (варианты)
Способ очистки полимеризационного оборудования от труднорастворимых отложений высокомолекулярного полимера (варианты)
Способ очистки полимеризационного оборудования от труднорастворимых отложений высокомолекулярного полимера (варианты)
Способ очистки полимеризационного оборудования от труднорастворимых отложений высокомолекулярного полимера (варианты)
Способ очистки полимеризационного оборудования от труднорастворимых отложений высокомолекулярного полимера (варианты)

 


Владельцы патента RU 2451692:

Закрытое акционерное общество "СИБУР Холдинг" (RU)

Изобретение относится к технологии удаления из реакторного оборудования отложений труднорастворимого высокомолекулярного полимера, в частности к способу очистки полимеризационного оборудования от отложений высокомолекулярного полимера и преобразования его в товарный продукт. Способ состоит в том, что в реакторное оборудование, содержащее отложения высокомолекулярного полимера и углеводородный растворитель, добавляют комплекс рутения в углеводородном растворителе, а именно соединение рутения в количестве от 0,03 до 0,07 г на один килограмм сухого высокомолекулярного полимера, имеющее в качестве лигандов 1,3-димезитилимидазолидинилиден, два атома хлора и орто-замещенный бензилиден, где заместителем в бензилиденовом лиганде является аминозамещенная метильная группа, а в качестве амина выступает диметиламино-, метилфениламино-группы, а также циклический амин, в частности пиперидин, соединение имеет общую формулу:

где Х=(СН3)2N-, (CH2)5N-, NCH3Ph; либо соединение рутения в количестве от 0,03 до 0,07 г на один килограмм сухого высокомолекулярного полимера, имеющее в качестве лигандов 1,3-бис-(2,6-диметилфенил)-2-имидазолидинилиден, два атома хлора и орто-замещенный бензилиден, где заместителем в бензилиденовом лиганде является аминозамещенная метильная группа, а в качестве амина выступает диалкиламино-, метилфениламино-группы, а так же циклические амины, в частности пиперидин, пирролидин и морфолин, соединение имеет общую формулу: где X=(Alk)2N-, (CH2)5N-, O(CH2)4N-, (CH2)4N-, NCH3Ph; Alk=СН3, С2Н5. Затем содержимое реакторного оборудования выдерживают при температуре от 45 до 85°С. Очистку полимеризационного оборудования осуществляют раствором комплекса рутения в углеводородном растворителе, в частности, в присутствии олефина. Технический результат выражается в очистке полимеризационного оборудования от отложений высокомолекулярного полимера при меньших затратах за счет снижения расходных норм комплексного соединения рутения. При этом получаемый в результате частичной деструкции труднорастворимого высокомолекулярного полимера продукт может использоваться в качестве вязких и жидких пластификаторов, олигомеров и товарного каучука. 4 н. и 4 з.п. ф-лы, 24 пр.

 

Изобретение относится к технологии удаления из реакторного оборудования отложений труднорастворимого высокомолекулярного полимера и преобразование его в товарный продукт.

При производстве полимеров или сополимеров из ненасыщенных углеводородов, например СКД, СКИ, ДССК, как правило, внутри полимеризационного оборудования, а именно в реакторах и/или в перекачивающих трубопроводах накапливается труднорастворимый высокомолекулярный полимер. В целях последующего эффективного использования оборудования труднорастворимый высокомолекулярный полимер необходимо удалять. Обычно удаление данного полимера из оборудования включает в себя пропаривание, обработку водой, подаваемой под высоким давлением для отслаивания полимера от поверхности оборудования, и его физическое удаление. Сроки проведения такой процедуры могут составлять до нескольких недель, а полимерные остатки после чистки являются твердыми отходами производства.

Ввиду того, что такой способ удаления требует много времени, является экономически неэффективным, трудозатратным, энергоемким и экологически небезопасным, существует необходимость в разработке нового способа удаления труднорастворимого высокомолекулярного полимера из реакторного оборудования.

Удаление полимера можно значительно облегчить благодаря использованию катализаторов метатезиса в качестве реагентов растворения, которые приводят к значительному снижению молекулярной массы высокомолекулярного полимера и его дальнейшему отделению от оборудования. Снижение молекулярной массы происходит в результате реакции кросс-метатезиса двойных связей, находящихся в структуре высокомолекулярного полимера (R.H.Grubbs, Handbook of Metathesis, Volume 2 - Applications in Organic Synthesis Wiley-VCH, Weinheim, 2003).

В патенте RU №2374269 от 27.11.2009 описан рутениевый катализатор, который используют в процессе полимеризации дициклопентадиена, а именно 1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(2-(N,N-диметиламинометил)бензилиден)рутения. Данный катализатор был испытан в качестве реагента растворения в процессе удаления труднорастворимого высокомолекулярного полимера (примеры №1, №2 и №3).

Существует способ очистки полимеризационного оборудования, выбранный в качестве прототипа (Патент США №7132503 от 07.11.2006), в котором оборудование, содержащее набухший в углеводородном растворителе нерастворимый высокомолекулярный полимер, обрабатывается раствором катализатора Граббса первого или второго поколения в том же растворителе при нагревании и соотношении катализатор/полимер от 0,1 ммоль катализатора на 100 г высокомолекулярного полимера и температуре от 40 до 45°С. Дальнейшая утилизация удаленного полимера в патенте не описана.

Недостатками данного способа являются большие расходные нормы катализатора и образование отходов в результате процесса очистки, которые требуют дальнейшей утилизации.

Задачей данного изобретения является снижение расходных норм катализатора и устранение отходов процесса очистки полимеризационного оборудования.

Поставленная задача решается тем, что в реакторное оборудование, содержащее отложения высокомолекулярного полимера и углеводородный растворитель, добавляют раствор реагента растворения высокомолекулярного полимера, а именно комплекс рутения. Затем содержимое реакторного оборудования выдерживают при температуре от 45 до 85°С. В отличие от прототипа комплекс рутения добавляют в количестве от 0,03 до 0,07 г на один килограмм сухого высокомолекулярного полимера. Растворение высокомолекулярного полимера достигается за счет его частичной деструкции. Среднечисловая молекулярная масса (Mn) получившегося в результате такой деструкции продукта, в зависимости от условий проведения процесса очистки, может варьировать от 630 до 350000. В дальнейшем такой продукт может использоваться в качестве вязких и жидких пластификаторов, олигомеров и товарного каучука.

При этом комплекс рутения представляет собой либо соединение рутения, имеющее в качестве лигандов 1,3-димезитилимидазолидинилиден, два атома хлора и орто-замещенный бензилиден, где заместителем в бензилиденовом лиганде является аминозамещенная метильная группа, а в качестве амина выступает диметиламино-, метилфениламино-группы, а также циклический амин, в частности пиперидин, соединение имеет общую формулу:

где Х=(СН3)2N-, (CH2)5N-, NCH3Ph;

либо соединение рутения, имеющее в качестве лигандов 1,3-бис-(2,6-диметилфенил)-2-имидазолидинилиден, два атома хлора и орто-замещенный бензилиден, где заместителем в бензилиденовом лиганде является аминозамещенная метильная группа, а в качестве амина выступает диалкиламино-, метилфениламино-группы, а также циклические амины, в частности пиперидин, пирролидин и морфолин, соединение имеет общую формулу:

где X=(AlK)2N-, (CH2)5N-, O(CH2)4N-, (CH2)4N-, NCH3Ph;

Alk=СН3, С2Н5;

Используемые соединения рутения могут быть получены по способу, описанному в документе US 2005/0261451 А1 от 24.11.2005. С целью уменьшения расходных норм комплекса рутения и уменьшения времени проведения процесса очистки в систему дополнительно добавляют олефины, а именно монозамещенные алкены, такие как стирол, гексен, октен, децен и др., в количестве от 7 до 30 г на один килограмм сухого высокомолекулярного полимера, это позволяет получать полимерные продукты с узким молекулярномассовым распределением и молекулярной массой, близкой к молекулярной массе товарного каучука.

Достигаемый технический результат выражается в снижении расходных норм катализатора, а также в возможности получения дополнительной готовой продукции из труднорастворимого высокомолекулярного полимера, без образования отходов.

Предлагаемое изобретение иллюстрируется примерами конкретного выполнения.

Пример 1.

Преобразование труднорастворимого высокомолекулярного полимера в товарный каучук в процессе чистки полимеризационного оборудования.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 350,0 г набухшего в нефрасе высокомолекулярного СКД-НД (дивинильный синтетический каучук, полученный на неодимовой каталитической системе) из промышленного реактора полимеризации, содержание растворителя (нефраса) в набухшем полимере составляет 157,1 г, что соответствует массовой доле растворителя 44,89% и массовой доле полимера 55,11% (192,3 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С загружают 440 мл сухого растворителя нефраса, 10 г гексена-1 и раствор 6 мл катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(2-(N,N-диметиламинометил)бензилиден)рутения в 20 мл сухого растворителя нефраса. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 3 часов.

Через 3 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 265000 дальтон, Mw 647000, коэффициент полидисперсности D 2,44. Далее раствор полимера подвергают паровой дегазации, полученную крошку каучука сушат при 110°С в вакуумном шкафу, получают продукт массой 189,3 г.

Пример 2.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения вязких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 450,0 г набухшего в нефрасе высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание нефраса в набухшем геле составляет 193,8 г, что соответствует массовой доле растворителя 43,07% и массовой доле полимера 56,93% (256,2 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4300 мл сухого растворителя нефраса, 8 г гексена-1 и раствор 10 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(2-(N,N-диметиламинометил)бензилиден)рутения в 20 мл сухого нефраса. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 42600 дальтон, Mw 115800, коэффициент полидисперсности D 2,72. Далее раствор полимера подвергают паровой дегазации, полученное вязкое масло сушат при 110°С в вакуумном шкафу, получают продукт массой 249,4 г.

Пример 3.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения жидких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 550,0 г набухшего в нефрасе высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание растворителя нефраса в набухшем полимере составляет 243,8 г, что соответствует массовой доле растворителя 44,33% и массовой доле полимера 55,67% (306,2 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4200 мл сухого толуола, 9,2 г гексена-1 и раствор 18 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидин илиден]дихлоро(2-(N,N-диметиламинометил)бензилиден)рутения в 20 мл сухого толуола. Реакционную массу в реакторе нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 5300 дальтон, Mw 13600, коэффициент полидисперсности D 2,56. Далее раствор полимера подвергают паровой дегазации, полученное масло сушат при 110°С в вакуумном шкафу, получают продукт массой 307,9 г.

Пример 4.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения низкомолекулярных олигомеров.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 550,0 г набухшего в нефрасе высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание нефраса в набухшем полимере составляет 234,7 г, что соответствует массовой доле растворителя 42,67% и массовой доле полимера 57,33% (315,3 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4200 мл сухого нефраса, 12,6 г гексена-1 и раствор 22 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(2-(N,N-диметиламинометил)бензилиден)рутения в 20 мл сухого нефраса. Реакционную массу в реакторе нагревают до 80°С и выдерживают при этой температуре в течение 5 часов.

Через 5 часов высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 630 дальтон. Далее раствор полимера подвергают безводной дегазации на роторном испарителе при температуре бани 60°С и постепенном понижении давления от атмосферного до 10 мм рт.ст. Получают масло массой 376,9 г.

Пример 5.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения жидких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 550 г набухшего в нефрасе высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание растворителя нефраса в набухшем полимере составляет 249,21 г, что соответствует массовой доле растворителя 45,31% и массовой доле полимера 54,69% (300,80 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4200 мл сухого толуола, 7,5 г децена-1 и раствор 15 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(2-(пипериди-1-илметил)бензилиден)рутения в 20 мл сухого растворителя толуола. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 7500 дальтон, Mw 15900, коэффициент полидисперсности D 2,12. Далее раствор полимера подвергают паровой дегазации, полученное масло сушат при 110°С в вакуумном шкафу, получают продукт массой 297,9 г.

Пример 6.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения вязких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 450 г набухшего в гептане высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание гептана в набухшем полимере составляет 202,86 г, что соответствует массовой доле растворителя 45,08% и массовой доле полимера 54,92% (247,14 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 2300 мл сухого растворителя толуола, 2000 мл сухого бензола, 7,4 г стирола и раствор 10 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(N-фенил,N-метилбензилиден)рутения в 20 мл сухого толуола. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 65800 дальтон, Mw 157200, коэффициент полидисперсности D 2,39. Далее раствор полимера подвергают паровой дегазации, полученное вязкое масло сушат при 110°С в вакуумном шкафу, получают продукт массой 245,2 г.

Пример 7.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения вязких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 400 г набухшего в гептане высокомолекулярного СКИ-3 (синтетический каучук изопреновый) из промышленного реактора полимеризации, содержание гептана в набухшем полимере составляет 162,48 г, что соответствует массовой доле растворителя 40,62% и массовой доле полимера 59,38% (237,52 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 2350 мл сухого толуола, 2000 мл сухого бензола, 7,0 г октена-1 и раствор 9 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(N-фенил,N-этилбензилиден)рутения в 20 мл сухого толуола. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 58400 дальтон, Mw 139500, коэффициент полидисперсности D 2,39. Далее раствор полимера подвергают паровой дегазации, полученное вязкое масло сушат при 110°С в вакуумном шкафу, получают продукт массой 235,6 г.

Пример 8.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения жидких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 400 г набухшего в гептане высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание гептана в набухшем полимере составляет 163,2 г, что соответствует массовой доле растворителя 40,80% и массовой доле полимера 59,20% (236,80 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4350 мл сухого нефраса, 8,3 г октена-1 и раствор 14 мг катализатора [1,3-бис-(2,6-диметилфенил)-2-имидазолидинилиден]дихлоро(N,N-диметилбензилиден)рутения в 20 мл сухого нефраса. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 8650 дальтон, Mw 18700, коэффициент полидисперсности D 2,16. Далее раствор полимера подвергают паровой дегазации, полученное масло сушат при 110°С в вакуумном шкафу, получают продукт массой 235,3 г.

Пример 9.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения низкомолекулярных олигомеров.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 450 г набухшего в гептане высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание гептана в набухшем полимере составляет 199,44 г, что соответствует массовой доле растворителя 44,32% и массовой доле полимера 55,68% (250,56 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4300 мл сухого нефраса, 9,0 г стирола и раствор 17 мг катализатора [1,3-бис-(2,6-диметилфенил)-2-имидазолидинилиден]дихлоро(N,N-диэтилбензилиден)рутения в 20 мл сухого нефраса. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 5 часов.

Через 5 часов высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 870 дальтон. Далее раствор полимера подвергают безводной дегазации на роторном испарителе при температуре бани 60°С и постепенном понижении давления от атмосферного до 10 мм рт.ст. Получают масло массой 248,9 г.

Пример 10.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения жидких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 500 г набухшего в гептане высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание гептана в набухшем полимере составляет 228,10 г, что соответствует массовой доле растворителя 45,62% и массовой доле полимера 54,38% (271,90 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4200 мл сухого нефраса, 8,1 г стирола и раствор 15 мг катализатора [1,3-бис-(2,6-диметилфенил)-2-имидазолидинилиден]дихлоро(N-метил,N-этилбензилиден)рутения в 20 мл сухого нефраса. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 8100 дальтон, Mw 21000, коэффициент полидисперсности D 2,59. Далее раствор полимера подвергают паровой дегазации, полученное масло сушат при 110°С в вакуумном шкафу, получают продукт массой 270,2 г.

Пример 11.

Преобразование труднорастворимого высокомолекулярного полимера в товарный каучук в процессе чистки полимеризационного оборудования.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 350 г набухшего в нефрасе высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание нефраса в набухшем полимере составляет 148,37 г, что соответствует массовой доле растворителя 42,39% и массовой доле полимера 57,61% (201,64 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4200 мл сухого толуола, 4,0 г стирола и раствор 6,5 мг катализатора [1,3-бис-(2,6-диметилфенил)-2-имидазолидинилиден]дихлоро(2-(пипериди-1-илметил)бензилиден)рутения в 20 мл сухого нефраса. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 3 часов.

Через 3 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 210000 дальтон, Mw 485100, коэффициент полидисперсности D 2,31. Далее раствор полимера подвергают паровой дегазации, полученную крошку каучука сушат при 110°С в вакуумном шкафу, получают продукт массой 201,2 г.

Пример 12.

Преобразование труднорастворимого высокомолекулярного полимера в товарный каучук в процессе чистки полимеризационного оборудования.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 400 г набухшего в нефрасе высокомолекулярного ДССК-2545 (дивинил-стирольный каучук) из промышленного реактора полимеризации, содержание нефраса в набухшем полимере составляет 174,04 г, что соответствует массовой доле растворителя 43,51% и массовой доле полимера 56,49% (225,96 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4300 мл сухого толуола, 4,5 г стирола и раствор 7,9 мг катализатора [1,3-бис-(2,6-диметилфенил)-2-имидазолидинилиден]дихлоро(2-(пирролиди-1-илметил)бензилиден)рутения в 20 мл сухого нефраса. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 3 часов.

Через 3 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 180000 дальтон, Mw 464400, коэффициент полидисперсности D 2,58. Далее раствор полимера подвергают паровой дегазации, полученную крошку каучука сушат при 110°С в вакуумном шкафу, получают продукт массой 224,8 г.

Пример 13.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения вязких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 550 г набухшего в нефрасе высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание нефраса в набухшем полимере составляет 278,36 г, что соответствует массовой доле растворителя 50,61% и массовой доле полимера 59,39% (271,64 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4200 мл сухого толуола, 9,0 г стирола и раствор 13 мг катализатора [1,3-бис-(2,6-диметилфенил)-2-имидазолидинилиден]дихлоро(2-морфолинометилбензилиден)рутения в 20 мл сухого нефраса. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 86900 дальтон, Mw 199800, коэффициент полидисперсности D 2,29. Далее раствор полимера подвергают паровой дегазации, полученное вязкое масло сушат при 110°С в вакуумном шкафу, получают продукт массой 271,1 г.

Пример 14.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения жидких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 500 г набухшего в нефрасе высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание нефраса в набухшем полимере составляет 210,35 г, что соответствует массовой доле растворителя 42,07% и массовой доле полимера 57,93% (289,65 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4200 мл сухого толуола, 10,0 г октена-1 и раствор 18 мг катализатора [1,3-бис-(2,6-диметилфенил)-2-имидазолидинилиден]дихлоро(N-фенил,N-метилбензилиден)рутения в 20 мл сухого нефраса. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 9900 дальтон, Mw 21200, коэффициент полидисперсности D 2,14. Далее раствор полимера подвергают паровой дегазации, полученное масло сушат при 110°С в вакуумном шкафу, получают продукт массой 288,6 г.

Пример 15.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения низкомолекулярных олигомеров.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 500 г набухшего в нефрасе высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание нефраса в набухшем полимере составляет 230,1 г, что соответствует массовой доле растворителя 46,02% и массовой доле полимера 53,98% (269,9 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4200 мл сухого толуола, 10,7 г октена-1 и раствор 19 мг катализатора [1,3-бис-(2,6-диметилфенил)-2-имидазолидинилиден]дихлоро(N-фенил,N-этилбензилиден)рутения в 20 мл сухого нефраса. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 5 часов.

Через 5 часов высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 910 дальтон. Далее раствор полимера подвергают безводной дегазации на роторном испарителе при температуре бани 60°С и постепенном понижении давления от атмосферного до 10 мм рт.ст. Получают масло массой 268,7 г.

Пример 16.

Преобразование труднорастворимого высокомолекулярного полимера в товарный каучук в процессе чистки полимеризационного оборудования.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 400,0 г набухшего в нефрасе высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание нефраса в набухшем полимере составляет 164,40 г, что соответствует массовой доле растворителя 41,10% и массовой доле полимера 58,90% (235,60 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4300 мл сухого нефраса и раствор 14 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидин илиден]дихлоро(2-(N,N-диметиламинометил)бензилиден)рутения в 20 мл сухого нефраса. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 6 часов.

Через 6 часов высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 350000 дальтон, Mw 795000, коэффициент полидисперсности D 2,27. Далее раствор полимера подвергают паровой дегазации, полученную крошку каучука сушат при 110°С в вакуумном шкафу, получают продукт массой 234,5 г.

Пример 17.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения вязких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 400,0 г набухшего в нефрасе высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание нефраса в набухшем геле составляет 190,44 г, что соответствует массовой доле растворителя 47,61% и массовой доле полимера 52,39% (209,56 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4300 мл сухого нефраса и раствор 15 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(2-(N,N-диметиламинометил)бензилиден)рутения в 20 мл сухого нефраса. После чего реакционную массу нагревают до 75°С и и выдерживают при этой температуре в течение 7 часов.

Через 7 часов высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 98600 дальтон, Mw 255300, коэффициент полидисперсности D 2,59. Далее раствор полимера подвергают паровой дегазации, полученное вязкое масло сушат при 110°С в вакуумном шкафу, получают продукт массой 207,9 г.

Пример 18.

Опытно-промышленная очистка реактора-полимеризатора без вскрытия аппарата.

В выключенный из технологической схемы реактор-полимеризатор объемом 17 м3, заполненный нефрасом, в котором находится 1,3 тонны высокомолекулярного труднорастворимого полимера СКД-НД, через измерительную колонку по штуцеру на крышке реактора последовательно вводят раствор 70 г [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(2-(N,N-диметиламинометил)бензилиден)рутения и 4600 мл чистого стирола, затем реактор разогревают до 70-75°С и запускают перемешивание, заданную температуру поддерживают периодической подачей пара в рубашку реактора. Подогрев реактора и перемешивание осуществляют в течение 6 часов (до прекращения увеличения сухого остатка в растворителе), при этом контроль сухого остатка проводят каждые 2 часа. Затем подачу пара прекращают, раствор каучука сливают из реактора в усреднитель. Реактор-полимеризатор промывают растворителем до содержания сухого остатка 0,2%, после чего его включают в батарею и используют в полимеризации.

Раствор каучука из усреднителя направляют на паровую дегазацию для выделения товарного продукта. Анализ полимера: содержание 1,4-цис-бутадиеновых звеньев составляет 79,9%, 1,4-транс-звеньев- 19%, 1,2-звеньев -1,1%, Mn=8000.

После вскрытия и осмотра реактора выявлено полное растворение высокомолекулярного полимера и очистка от него внутренних элементов реактора.

Также технический результат данного изобретения достигается при использовании в качестве реагента растворения труднорастворимого высокомолекулярного полимера комплексного соединения рутения, описанного в международной заявке № PCT/RU 2008/000794, имеющего в качестве лигандов 1,3-димезитилимидазолидинилиден, два атома хлора и орто-замещенный бензилиден, где заместителем в бензилиденовом лиганде является аминозамещенная метильная группа, а в качестве амина выступает диэтиламино-, диметилэтиламино-группы, а так же циклический амин, в частности пирролидин и морфолин, соединение имеет общую формулу:

где Х=(C2H5)2N-, (СН3)(С2Н5)N-, (CH2)4N-, O(СН2)4N-

Пример 19.

Преобразование труднорастворимого высокомолекулярного полимера в товарный каучук в процессе чистки полимеризационного оборудования.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 450,0 г набухшего в нефрасе высокомолекулярного СКИ из промышленного реактора полимеризации, содержание нефраса в набухшем полимере составляет 189,63 г, что соответствует массовой доле растворителя 42,14% и массовой доле полимера 57,86% (260,37 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4300 мл сухого нефраса, 5,5 г стирола и раствор 8 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидин илиден]дихлоро(2-(N,N-диэтиламинометил)бензилиден)рутения в 20 мл сухого нефраса. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 3 часов.

Через 3 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 241500 дальтон, Mw 591600, коэффициент полидисперсности D 2,45. Далее раствор полимера подвергают паровой дегазации, полученную крошку каучука сушат при 110°С в вакуумном шкафу, получают продукт массой 258,6 г.

Пример 20.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения жидких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 400,0 г набухшего в нефрасе высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание нефраса в набухшем полимере составляет 190,60 г, что соответствует массовой доле растворителя 47,65% и массовой доле полимера 52,35% (209,40 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4350 мл сухого толуола, 7,3 г стирола и раствор 13 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидин илиден]дихлоро(2-(N,N-диэтиламинометил)бензилиден)рутения в 20 мл сухого толуола. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 5150 дальтон, Mw 12500, коэффициент полидисперсности D 2,43. Далее раствор полимера подвергают паровой дегазации, полученное масло сушат при 110°С в вакуумном шкафу, получают продукт массой 208,4 г.

Пример 21.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения вязких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 500,0 г набухшего в гептане высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание гептана в набухшем полимере составляет 217,9 г, что соответствует массовой доле растворителя 43,58% и массовой доле полимера 56,42% (282,1 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4250 мл сухого гептана, 12,5 г стирола и раствор 21 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидин илиден]дихлоро(2-(N-метил,N-этиламинометил)бензилиден)рутения в 20 мл сухого растворителя гептана. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 38900 дальтон, Mw 110476, коэффициент полидисперсности D 2,84. Далее раствор полимера подвергают паровой дегазации, полученное вязкое масло сушат при 110°С в вакуумном шкафу, получают продукт массой 281,7 г.

Пример 22.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения жидких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 350,0 г набухшего в нефрасе высокомолекулярного ДССК-2545 из промышленного реактора полимеризации, содержание нефраса в набухшем полимере составляет 161,28 г, что соответствует массовой доле растворителя 46,08% и массовой доле полимера 53,92% (188,72 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 2400 мл сухого толуола и 2000 мл сухого бензола, 5,7 г стирола и раствор 11 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(2-(N-метил,N-этиламинометил)бензилиден)рутения в 20 мл сухого толуола. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 6200 дальтон, Mw 16750, коэффициент полидисперсности D 2,70. Далее раствор полимера подвергают паровой дегазации, полученное масло сушат при 110°С в вакуумном шкафу, получают продукт массой 187,2 г.

Пример 23.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения вязких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 400 г набухшего в нефрасе высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание нефраса в набухшем полимере составляет 165,44 г, что соответствует массовой доле растворителя 41,36% и массовой доле полимера 58,64% (234,56 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 4350 мл сухого толуола, 9,3 г стирола и раствор 11 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(2-(пирролиди-1-илметил)бензилиден)рутения в 20 мл сухого толуола. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 37200 дальтон, Mw 105600, коэффициент полидисперсности D 2,83. Далее раствор полимера подвергают паровой дегазации, полученное вязкое масло сушат при 110°С в вакуумном шкафу, получают продукт массой 233,1 г.

Пример 24.

Преобразование труднорастворимого высокомолекулярного полимера в низкомолекулярный каучук в процессе чистки полимеризационного оборудования с целью получения жидких пластификаторов.

Деструкцию осуществляют в реакторе объемом 5 л. В реактор помещают 550 г набухшего в нефрасе высокомолекулярного СКД-НД из промышленного реактора полимеризации, содержание нефраса в набухшем полимере составляет 267,96 г, что соответствует массовой доле растворителя 48,72% и массовой доле полимера 51,28% (282,04 г). Затем в реактор последовательно при перемешивании и температуре 25-40°С помещают 2200 мл сухого толуола, 2000 мл сухого бензола, 5,6 г октена-1 и раствор 13 мг катализатора [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(2-морфолино метилбензилиден)рутения в 20 мл сухого толуола. После чего реакционную массу нагревают до 75°С и выдерживают при этой температуре в течение 4 часов.

Через 4 часа высокомолекулярный полимер полностью растворился, полученный раствор охлаждают, сливают из реактора и определяют молекулярно-массовые характеристики полученного полимера: Mn 9600 дальтон, Mw 22750, коэффициент полидисперсности D 2,37. Далее раствор полимера подвергают паровой дегазации, полученное масло сушат при 110°С в вакуумном шкафу, получают продукт массой 281,2 г.

1. Способ очистки полимеризационного оборудования, заключающийся в том, что оборудование, содержащее набухший в углеводородном растворителе высокомолекулярный полимер, обрабатывают при температуре от 45 до 85°С раствором комплекса рутения в углеводородном растворителе, отличающийся тем, что в качестве комплекса рутения используют соединение рутения, имеющее в качестве лигандов 1,3-димезитилимидазолидинилиден, два атома хлора и орто-замещенный бензилиден, где заместителем в бензилиденовом лиганде является аминозамещенная метильная группа, а в качестве амина выступает диметиламино-, метилфениламино- группы, а также циклический амин, в частности пиперидин, соединение имеет общую формулу:

где Х=(СН3)2N-, (CH2)5N-, NCH3Ph;
при этом комплексное соединение рутения используют в количестве от 0,03 до 0,07 г на один килограмм сухого высокомолекулярного полимера.

2. Способ очистки полимеризационного оборудования, заключающийся в том, что оборудование, содержащее набухший в углеводородном растворителе высокомолекулярный полимер, обрабатывают при температуре от 45 до 85°С раствором комплекса рутения в углеводородном растворителе, отличающийся тем, что в качестве комплекса рутения используют соединение рутения, имеющее в качестве лигандов 1,3-бис-(2,6-диметилфенил)-2-имидазолидинилиден, два атома хлора и орто-замещенный бензилиден, где заместителем в бензилиденовом лиганде является аминозамещенная метильная группа, а в качестве амина выступает диалкиламино-, метилфениламино группы, а также циклические амины, в частности пиперидин, пирролидин и морфолин, соединение имеет общую формулу:

где X=(AlK)2N-, (CH2)5N-, O(CH2)4N-, (CH2)4N-, NCH3Ph;
Alk=СН3, С2Н5;
при этом комплексное соединение рутения используют в количестве от 0,03 до 0,07 г на один килограмм сухого высокомолекулярного полимера.

3. Способ очистки полимеризационного оборудования, заключающийся в том, что оборудование, содержащее набухший в углеводородном растворителе высокомолекулярный полимер, обрабатывают при температуре от 45 до 85°С раствором комплекса рутения в углеводородном растворителе, отличающийся тем, что очистку осуществляют в присутствии олефина, а в качестве комплекса рутения используют соединение рутения, имеющее в качестве лигандов 1,3-димезитилимидазолидинилиден, два атома хлора и орто-замещенный бензилиден, где заместителем в бензилиденовом лиганде является аминозамещенная метильная группа, а в качестве амина выступает диметиламино-, метилфениламино- группы, а также циклический амин, в частности пиперидин, соединение имеет общую формулу:

где Х=(СН3)2N-, (CH2)5N-, NCH3Ph;
при этом комплексное соединение рутения используют в количестве от 0,03 до 0,07 г на один килограмм сухого высокомолекулярного полимера.

4. Способ по п.3, отличающийся тем, что в качестве олефина используют монозамещенные алкены.

5. Способ по п.3, отличающийся тем, что олефин используют в количестве от 7 до 30 г на один килограмм сухого высокомолекулярного полимера.

6. Способ очистки полимеризационного оборудования, заключающийся в том, что оборудование, содержащее набухший в углеводородном растворителе высокомолекулярный полимер, обрабатывают при температуре от 45 до 85°С раствором комплекса рутения в углеводородном растворителе, отличающийся тем, что очистку осуществляют в присутствии олефина, а в качестве комплекса рутения используют соединение рутения, имеющее в качестве лигандов 1,3-бис-(2,6-диметилфенил)-2-имидазолидинилиден, два атома хлора и орто-замещенный бензилиден, где заместителем в бензилиденовом лиганде является аминозамещенная метильная группа, а в качестве амина выступает диалкиламино-, метилфениламино- группы, а также циклические амины, в частности пиперидин, пирролидин и морфолин, соединение имеет общую формулу:

где X=(Alk)2N-, (CH2)5N-; O(CH2)4N-, (СН2)4N-, NCH3Ph;
Alk=СН3, С2Н5;
при этом комплексное соединение рутения используют в количестве от 0,03 до 0,07 г на один килограмм сухого высокомолекулярного полимера.

7. Способ по п.6, отличающийся тем, что в качестве олефина используют монозамещенные алкены.

8. Способ по п.6, отличающийся тем, что олефин используют в количестве от 7 до 30 г на один килограмм сухого высокомолекулярного полимера.



 

Похожие патенты:

Изобретение относится к получению модифицированного цис-1,4-полибутадиена в присутствии каталитических систем Циглера-Натта, получаемый полимер применяют в производстве резино-технических изделий, шин с высокими эксплуатационными характеристиками.

Изобретение относится к получению модифицированного цис-1,4-полибутадиена в присутствии каталитических систем Циглера-Натта, получаемый полимер применяют в производстве резино-технических изделий, шин с высокими эксплуатационными характеристиками.

Изобретение относится к способу получения галобутилкаучука взаимодействием галогена и бутилкаучука, полученного методом низкотемпературной суспензионной сополимеризации изобутилена с изопреном на катализаторе хлористый алюминий в среде хлорметила, при этом изобутилен содержит не менее 99.97% мас.

Изобретение относится к способу получения галобутилкаучука взаимодействием галогена и бутилкаучука, полученного методом низкотемпературной суспензионной сополимеризации изобутилена с изопреном на катализаторе хлористый алюминий в среде хлорметила, при этом изобутилен содержит не менее 99.97% мас.
Изобретение относится к способу получения наполненной полимерной композиции, в которой применяют более одного типа частиц наполнителя. .
Изобретение относится к способу получения наполненной полимерной композиции, в которой применяют более одного типа частиц наполнителя. .
Изобретение относится к способу получения наполненной полимерной композиции, в которой применяют более одного типа частиц наполнителя. .

Изобретение относится к способам получения форполимера с функциональными группами путем химической модификации олигодиендиолов, которые используются в химической промышленности как основа для получения шин, резинотехнических изделий и лакокрасочных материалов.

Изобретение относится к способу получения модифицированного (со)полимера на основе сопряженного диена, модифицированному (со)полимеру на основе сопряженного диена и каучуковой композиции

Изобретение относится к способу получения модифицированного сопряженного диенового полимера

Изобретение относится к способу получения эпоксидированных 1,2-полибутадиенов

Изобретение относится к способу получения эпоксидированных 1,2-полибутадиенов

Изобретение относится к способу получения полимеров формулы (1), содержащих дихлорциклопропановые группы в основной цепи и боковых звеньях макромолекул Способ заключается во взаимодействии атактического 1,2-полибутадиена с хлороформом и водным раствором щелочного металла в присутствии четвертичной аммониевой соли в качестве катализатора межфазного переноса при температуре 40-50°С в течение 2-6 ч, отличающийся тем, что синтез проводят при мольном соотношении 1,2-полибутадиен: CHCl3:NaOH: катализатор, равном 1:4-14:1,5-2:0,001-0,002

Изобретение относится к несшитым эластомерным полимерам, эластомерным композициям и изделиям

Изобретение относится к области высокомолекулярных соединений, в частности к получению хлорированных полимерных продуктов на основе 1,2-полибутадиенов (1,2-ПБ)

Изобретение относится к области высокомолекулярных соединений, в частности к получению хлорированных полимерных продуктов на основе 1,2-полибутадиенов (1,2-ПБ)

Изобретение относится к области высокомолекулярных соединений, в частности к получению хлорированных полимерных продуктов на основе 1,2-полибутадиенов (1,2-ПБ)

Изобретение относится к способу получения модифицированного сопряженного диенового полимера
Наверх