Система экранирования пограничного слоя посредством расположенной выше по потоку плазмы (варианты) и способ работы системы

Система экранирования пограничного слоя посредством расположенной выше по потоку плазмы содержит отверстия пленочного охлаждения, сформированные через стенку и генератор плазмы. Отверстия пленочного охлаждения расположены под углом в направлении выхода от холодной поверхности стенки к внешней горячей поверхности стенки. Генератор плазмы расположен выше по потоку относительно отверстий пленочного охлаждения для формирования плазмы, проходящей над отверстиями пленочного охлаждения. Способ работы системы экранирования пограничного слоя посредством расположенной выше по потоку плазмы заключается в том, что на генератор плазмы подают энергию для формирования плазмы, проходящей в направлении выхода поверх отверстий пленочного охлаждения, сформированных через стенку, и вдоль внешней горячей поверхности стенки. Изобретение направлено на обеспечение эффекта экранирования отверстий пленочного охлаждения без физического вмешательства для поддержания аэродинамической эффективности (КПД). 3 н. и 7 з.п. ф-лы, 7 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к пленочному охлаждению горячих поверхностей, таких как горячие элементы газотурбинного двигателя самолета, и, в частности, к отверстиям пленочного охлаждения, которые используются в облицовке камеры сгорания, а также на аэродинамических профилях сопла турбины в газотурбинных двигателях.

Предшествующий уровень техники

Обычный газотурбинный двигатель турбовентиляторного типа, как правило, включает в себя передний вентилятор и бустер или компрессор низкого давления, средний внутренний контур двигателя и турбину низкого давления, которая приводит во вращение вентилятор и бустер или компрессор низкого давления. Внутренний контур двигателя включает в себя компрессор высокого давления, камеру сгорания, турбину высокого давления, установленные последовательно по потоку. Компрессор высокого давления и турбина высокого давления внутреннего контура двигателя соединены валом высокого давления. Воздух под большим давлением из компрессора высокого давления смешивается с топливом в камере сгорания и воспламеняется, формируя очень горячий поток газа с большой энергией. Поток газа протекает через турбину высокого давления, приводя во вращение ее и вал высокого давления, который, в свою очередь, приводит во вращение компрессор высокого давления.

Поток газа, выходящий из турбины высокого давления расширяется через вторую турбину и турбину низкого давления. Турбина низкого давления приводит во вращение вентилятор и компрессор ускорителя через вал низкого давления. Вал низкого давления продолжается через вал высокого давления. Большая часть производимой тяги генерируется вентилятором. Морские или промышленные газотурбинные двигатели имеют турбины низкого давления, которые передают энергию в генераторы, винты кораблей, насосы и другие устройства, в то время как в турбовинтовых двигателях турбины низкого давления используются для передачи энергии к пропеллерам, обычно, через коробку передач.

Турбина высокого давления имеет сопло турбины, включающее в себя, по меньшей мере, один ряд расположенных вдоль окружности на расстоянии друг от друга аэродинамических профилей или лопаток, продолжающихся радиально между радиально внутренним и внешним поясами. Эти лопатки обычно выполнены полыми и имеют внешнюю стенку, которая охлаждается воздухом охлаждения, поступающим от компрессора. Горячие газы, протекающие вдоль внешней стенки охлаждаемой лопатки турбины, формируют слой потока и слой тепловой границы вдоль горячих внешних поверхностей внешней стенки лопатки на горячих поверхностях оконечной стенки внутреннего и внешнего поясов, над которыми протекают горячие газы.

Пленочное охлаждение широко используется для горячих элементов турбины, таких как облицовка камеры сгорания, лопатки и пояса сопла турбины, лопатки турбины, кожухи турбины, выхлопные сопла и облицовка выхлопного сопла (US 5465572), такие как используются в двигателях с дожиганием топлива (с форсажем). Пленочное охлаждение используется для подачи холодного воздуха через отверстия или прорези пленочного охлаждения для формирования изолирующего слоя на горячей поверхности элемента и уменьшения его непосредственного контакта с горячими газами, протекающими над поверхностью элемента. Отверстия пленочного охлаждения обычно установлены под углом к направлению выхода, в результате чего, охлаждающий воздух поступает в пограничный слой вдоль горячей поверхности или наиболее близко к ней. Поток пленочного охлаждения может смешиваться с горячим газом, в результате чего его эффективность уменьшается по мере протекания в направлении выхода. Один из способов уменьшения перемешивания охлаждающей пленки с горячими газами состоит в создании ступеньки, обращенной к кормовой части, перед отверстиями или пазами для экранирования потока пленки. Этот способ используется для охлаждения облицовки камеры сгорания (US 5181379), где скорость газа ниже, но не на аэродинамических профилях турбины, где скорость газа высока. Ступенька, обращенная к кормовой части, представляет собой физически инородный элемент для пленочного охлаждения. В случае применения в устройствах, работающих с высокой скоростью, такое физически инородное тело может привести к существенным аэродинамическим потерям. Желательно иметь устройство, которое обеспечит аналогичный эффект экранирования для пленочного охлаждения без физического вмешательства, для сохранения аэродинамической эффективности.

Краткое изложение существа изобретения

Задачей настоящего изобретения является создание устройства, которое обеспечивает эффект экранирования для отверстий пленочного охлаждения в камере сгорания реактивного двигателя лайнера и турбинного сопла, установленного в крыле в газотурбинных сопловых двигателях, без физического вмешательства для поддержания аэродинамической эффективности (КПД).

Система экранирования пограничного слоя посредством расположенной выше по потоку плазмы содержит отверстия пленочного охлаждения, сформированные через стенку и под углом в выходном направлении от холодной поверхности стенки к внешней горячей поверхности стенки. Генератор плазмы, расположенный выше по потоку относительно отверстий пленочного охлаждения, используется для формирования плазмы, продолжающейся над отверстиями пленочного охлаждения.

В варианте выполнения системы генератор плазмы установлен на стенке и включает в себя внутренние и внешние электроды, разделенные диэлектрическим материалом. Источник питания переменного напряжения подключен к электродам для подачи высокого переменного напряжения к электродам. Диэлектрический материал расположен внутри канавки на внешней горячей поверхности стенки.

В более конкретном варианте выполнения система дополнительно содержит лопатку газотурбинного двигателя, имеющую стенку, образующую, по меньшей мере, часть полого аэродинамического профиля лопатки. Аэродинамический профиль продолжается радиально в направлении размаха между радиально внутренним и внешним поясами и в направлении далее по потоку, а также в направлении хорды между противоположными передней и задней кромками. Аэродинамический профиль может представлять собой часть лопатки сопла высокого давления турбины. Генератор плазмы может быть установлен на аэродинамическом профиле с использованием диэлектрического материала, расположенного внутри канавки, продолжающейся вдоль направления размаха на внешней горячей поверхности аэродинамического профиля.

В другом более конкретном варианте выполнения система дополнительно содержит стенку, выполненную кольцевой и образующую, по меньшей мере, часть облицовки камеры сгорания газотурбинного двигателя, и кольцевую канавку.

Способ работы системы экранирования пограничного слоя расположенной выше по потоку плазмы заключается в том, что на генератор плазмы подают энергию для формирования плазмы, продолжающейся в направлении выхода поверх отверстий пленочного охлаждения, сформированных через стенку, и вдоль внешней горячей поверхности стенки. Генератор плазмы может работать в режиме установившегося состояния или в неустановившемся режиме.

Краткое описание чертежей

Указанные выше и другие признаки изобретения поясняются в нижеследующем описании, которое следует рассматривать совместно с прилагаемыми чертежами, на которых:

Фиг.1 изображает продольный разрез примерного варианта выполнения газотурбинного двигателя самолета с системой экранирования пограничного слоя посредством расположенной выше по потоку плазмы, иллюстрирующая лопатки сопла ступени высокого давления турбины двигателя согласно изобретению;

фиг.2 - лопатки сопла с системой экранирования пограничного слоя посредством расположенной выше по потоку плазмы на фиг.1 согласно изобретению;

фиг.3 - общий вид лопаток и генераторов плазмы системы экранирования пограничного слоя посредством расположенной выше по потоку плазмы на фиг.2 согласно изобретению;

фиг.4 - поперечное сечение через лопатки на фиг.3 согласно изобретению;

фиг.5 - схему части системы экранирования пограничного слоя посредством расположенной выше по потоку плазмы с включенными генераторами плазмы, представленными на фиг.4, и пограничного слоя согласно изобретению;

фиг.6 - схему пограничного слоя без генераторов плазмы согласно изобретению;

фиг.7 - общий вид оболочки газотурбинного двигателя с системой экранирования пограничного слоя посредством расположенной выше по потоку плазмы согласно изобретению.

Подробное описание предпочтительных вариантов воплощения изобретения

На фиг.1 показан пример турбовентиляторного газотурбинного двигателя 10, который расположен вокруг центральной оси 8 двигателя и содержит вентилятор 12, принимающий окружающий воздух 14, бустер или компрессор 16 низкого давления (КНД), компрессор 18 высокого давления (КВД), камеру 20 сгорания, в которой топливо смешивается с воздухом 14, сжатым КВД 18, для генерирования газов сгорания или потока 19 газа, который протекает в направлении выхода через турбину 22 высокого давления (ТВД) и турбину 24 низкого давления (ТНД), через которую происходит выброс газов сгорания из двигателя 10. ТВД 22 соединена с КВД 18 так, что, по существу, формируется ротор 29 высокого давления. Вал 28 низкого давления соединяет ТНД 24, как с вентилятором 12, так и с компрессором 16 низкого давления. Второй вал 28 низкого давления, по меньшей мере, частично установлен с возможностью вращения коаксиально и радиально внутри первого ротора или ротора высокого давления.

На фиг.2 и 3 показано сопло 30 турбины, используемое в турбине 22 высокого давления, через которое осуществляется выброс потока 19 горячего газа в камеру 20 сгорания. Основная камера 20 сгорания содержит внутреннюю и внешнюю облицовки 74, 76 камеры сгорания. Пример варианта выполнения сопла 30 турбины, который также в более общем виде обозначен как узел 31 лопаток, содержит ряд 33 расположенных вдоль окружности на некотором расстоянии друг от друга лопаток 32, продолжающихся радиально в направлении S размаха между радиально внутренним и внешним поясами 38, 40 соответственно. Пояса и лопатки в описываемом варианте выполнения сопла 30 турбины сформированы в виде сегментов 42 окружности, обычно с двумя лопатками 32 на сегмент 42. При этом могут использоваться более чем два сегмента, и сегменты обычно имеют осевые разделительные линии, соответствующим образом соединенные вместе с использованием обычного шлицевого уплотнителя между ними. Часть выбрасываемого из компрессора воздуха 45 используется для подачи воздуха 35 охлаждения под давлением к соплу 30 турбины для охлаждения различных его элементов, включая полые аэродинамические профили 39 и внутренний и внешний пояса. Воздух 35 охлаждения также используется для пленочного охлаждения кольцевого кожуха 72, окружающего кончики 82 вращающихся лопаток турбины 22 высокого давления.

Каждый аэродинамический профиль 39 (фиг.3 и 4) содержит внешнюю стенку 26, имеющую сторону 46 давления и противоположную вдоль контура сторону 48 всасывания, которая продолжается вдоль оси в направлении C хорды между противоположными передней и задней кромками LE, TE соответственно. Аэродинамические профили 39 и внешние стенки 26 продолжаются радиально в направлении S размаха между внутренним и внешним поясами 38, 40. Эти пояса обычно представляют собой цельнолитую деталь вместе с соответствующими лопатками, формируемую во время первоначального изготовления. Поток 19 горячих газов сгорания протекает через каналы 50 потока между аэродинамическими профилями 39. Каналы 50 потока ограничены внутренними горячими профилями 52 относительно потока 19 газа, внутренним и внешним поясами 38, 40 и внешними горячими поверхностями 54 внешней для них стенки 26 вдоль сторон 46, 48 повышенного давления и всасывания аэродинамических профилей 39.

Поток 19 горячего газа сгорания, протекающий над охлаждаемыми лопатками 32 турбины и внешними стенками 26, формирует пограничный слой 60 потока вдоль внутренних горячих поверхностей 52 внутреннего и внешнего поясов 38, 40 и, как схематично показано на фиг.6, вдоль внешних горячих поверхностей 54 сторон 46, 48 повышенного давления и всасывания внешних стенок 26. В пограничном слое 60 потока присутствует градиент V скорости и градиент T температуры газа рядом с внешними горячими поверхностями 54 сторон 46, 48 повышенного давления и всасывания внешних стенок 26. Градиент T температуры газа и поток 19 горячего газа приводят к нежелательному и неблагоприятному нагреву вдоль внешних горячих поверхностей 54 сторон 46, 48 повышенного давления и всасывания внешних стенок 26. Градиент T температуры газа приводит к нежелательной теплопередаче от горячего потока 19 газа к относительно более холодным, но, тем не менее, горячим внешним стенкам 26.

Внешние стенки 26 охлаждаются пленкой с использованием воздуха 35 охлаждения, продуваемого под давлением, который составляет часть выхлопного воздуха на выходе 45 компрессора, поступающего от последней ступени 43 компрессора высокого давления в направлении выхода компрессора 18 высокого давления (фиг.1 и 2). Часть выхлопного воздуха 45 компрессора протекает вокруг внешней облицовки 76 камеры сгорания и через отверстия 44 облицовки в расположенном после них фланце 47 внешней облицовки 76 камеры сгорания в камеру 56 повышенного давления охлаждающего воздуха. Часть воздуха 45 на выходе компрессора, который протекает в камеру 56 повышенного давления охлаждающего воздуха, используется как воздух 35 охлаждения и протекает в полые внутренние пространства 41 аэродинамических профилей 39.

Отверстия 49 пленочного охлаждения, такие как отверстия цилиндрической или другой формы, или прорези, сформированы через внешнюю стенку 26 на сторонах 46, 48 повышенного давления и всасывания аэродинамических профилей 39 (фиг.2, 3 и 4). Отверстия 49 пленочного охлаждения используются для подачи воздуха 35 охлаждения через внешнюю стенку 26 и образуют теплозащитную пленку 37 охлаждения на внешней горячей поверхности 54 стенки 26. Система 11 экранирования пограничного слоя посредством расположенной выше по потоку плазмы (фиг.1) предназначена для экранирования внешних горячих поверхностей 54 с пленочным охлаждением стенок 26 аэродинамических профилей 39 в сопле 30 турбины для турбины 22 высокого давления. Система 11 экранирования пограничного слоя посредством расположенной выше по потоку плазмы также разработана для экранирования охлаждаемых пленкой внешних горячих поверхностей 54 стенок 26, таких как используются в камере 20 сгорания, а также других охлаждаемых пленкой горячих поверхностей других элементов газотурбинного двигателя и охлаждаемых пленкой стенок негазотурбинного двигателя.

Отверстия 49 пленочного охлаждения расположены под углом в направлении выхода относительно потока 19 горячего газа. Отверстия 49 пленочного охлаждения продолжаются через стенку 26 от холодной поверхности 59 стенки 26 к внешней горячей поверхности 54 стенки 26, в общем, в направлении D выхода. Термины холодная поверхность 59 и внешняя горячая поверхность 54 используются для обозначения относительно холодной и относительно горячей поверхности во время работы двигателя или нагрева стенки 26 и не отражают их относительные температуры, когда система 11 не работает. Отверстия 49 пленочного охлаждения обычно выполнены неглубокими относительно стенки 26 и расположены под углом в выходном направлении для внедрения воздуха 35 пленочного охлаждения в пограничный слой вдоль внешней горячей поверхности 54 и формирования пленки 37 охлаждения над горячей поверхностью. Электронный контроллер 51 можно использовать для управления и включения/выключения генераторов 2 плазмы и системы активного управления зазором, если в двигателе такая имеется.

Система 11 экранирования пограничного слоя посредством расположенной выше по потоку плазмы (фиг.2-5) разработана с возможностью формирования виртуального аэродинамического экрана для пленки 37 охлаждения над внешней горячей поверхностью 54 стенки 26. Представленная здесь система 11 экранирования пограничного слоя посредством расположенной выше по потоку плазмы содержит генераторы 2 плазмы, расположенные на внешней горячей поверхности 54 стенки 26 выше по потоку U перед отверстиями 49 пленочного охлаждения (фиг.5). Генератор 2 плазмы расположен на каждой из сторон 48 всасывания и сторон 46 повышенного давления аэродинамических профилей 39 выше по потоку или перед отверстиями 49 пленочного охлаждения. Генераторы 2 плазмы формируют плазму 90, которая находится у внешней поверхности аэродинамического профиля, вдоль каждой из внешних горячих поверхностей 54 сторон 46, 48 повышенного давления и всасывания аэродинамических профилей 39. Система 11 экранирования пограничного слоя посредством расположенной выше по потоку плазмы поднимает слой 60 границы потока, отрывая его и поднимая от внешних горячих поверхностей 54 внешних стенок 26 аэродинамических профилей 39 (фиг.5). В результате формируется пограничный слой 70 скольжения для потока 19 газа, который протекает над и защищает пленку 37 охлаждения и, кроме того, уменьшает количество тепла, передаваемого в стенку 26.

Пограничный слой 70 скольжения образует поверхность 68 раздела между потоком 19 газа и внешней горячей поверхностью 54 внешней стенки 26, причем поверхность 68 раздела не представляет собой сплошную поверхность, когда генератор 2 плазмы включают или подают на него питание. Пограничный слой 60 потока, имеющий градиенты V, T скорости и температуры газа, отделен от внешней горячей поверхности 54 слоем 70 скольжения, когда на генераторы 2 плазмы подано питание (фиг.5), причем поток 60 непосредственно входит в контакт с внешней горячей поверхностью 54, когда питание на генераторы 2 плазмы не подано (фиг.6).

Экранирование пленки 37 охлаждения на внешних горячих поверхностях 54 снижает поверхностную теплопередачу между потоком 19 газа и внешними горячими поверхностями 54 внешних стенок 26 аэродинамических профилей 39, благодаря наличию пограничного слоя 60 потока. Уменьшение теплопередачи улучшает срок службы лопатки или другого элемента, охлаждаемого пленкой, экранированной расположенной выше по потоку плазмой и снижает требования к потоку охлаждения для элемента и, таким образом, повышает эффективность двигателя.

На фиг.5 показан вариант выполнения генератора 2 плазмы, который содержит генераторы 2 плазмы, установленные на внешних стенках 26 лопаток 32. Каждый из генераторов 2 плазмы содержит внутренние и внешние электроды 3, 4, разделенные диэлектрическим материалом 5. Диэлектрический материал 5 расположен в канавках 6, продолжающихся в направлении размаха, во внешних горячих поверхностях 54 внешних стенок 26 лопаток 32. Источник 100 переменного напряжения подключен к электродам для подачи высокого переменного напряжения к электродам.

Когда амплитуда переменного напряжения достаточно велика, поток 19 газа ионизируется в области наибольшего электрического потенциала, формируя плазму 90. Множество генераторов 2 плазмы формируют плазму 90 вблизи внешней поверхности, которая охватывает существенный участок внешней горячей поверхности 54 лопатки 32. Плазма 90, в общем, начинается на кромке 102 внешнего электрода 4, который открыт к потоку 19 газа, и распространяется вдоль области 104, которая представляет собой проекцию внешнего электрода 4 и которая закрыта диэлектрическим материалом 5. Плазма 90 при наличии градиента электрического поля формирует силу, приложенную к потоку 19 газа между внешней горячей поверхностью 54 и плазмой 90, индуцируя виртуальный аэродинамический экран для пленки охлаждения над внешней горячей поверхностью 54 внешней стенки 26 аэродинамического профиля 39. Индуцированный аэродинамический экран и полученное в результате изменение распределения давления формирует пограничный слой 70 скольжения для потока 19 газа так, что он протекает над пленкой 37 охлаждения. Известно, что аэродинамические профили, в которых используются плазменные генераторы, проявили способность предотвращения разделения потока над аэродинамическими профилями.

Когда включают генераторы 2 плазмы, градиент V скорости на границе 68 перехода становится меньше, чем когда плазменные генераторы 2 выключены. Аналогично, градиент T температуры на границе 68 перехода также становится меньше, когда генераторы 2 плазмы включены, чем когда генераторы 2 плазмы выключены. Поэтому нагрев от потока 19 горячего газа внешних поверхностей 54 сторон 48 всасывания внешних стенок 26 аэродинамических профилей 39 также будет меньше, когда генераторы 2 плазмы включены, чем когда генераторы 2 плазмы выключены. Генераторы 2 плазмы могут работать либо в установившемся режиме, либо в неустановившемся режиме.

Система 11 экранирования пограничного слоя посредством расположенной выше по потоку плазмы (фиг.1-6) используется с аэродинамическими профилями 39 сопла 30 турбины для турбины 22 высокого давления и, более конкретно, используется на обеих сторонах 46, 48 повышенного давления и всасывания аэродинамических профилей внешней или горячей стенки. Система 11 экранирования пограничного слоя расположенной выше по потоку плазмой также может использоваться вдоль внутренних горячих поверхностей 52 внутреннего и внешнего поясов 38, 40 и внутренней и внешней облицовок 74, 76 камеры сгорания основной камеры 20 сгорания (фиг.1). Система 11 экранирования пограничного слоя расположенной выше по потоку плазмой также может использоваться в аэродинамических профилях сопла турбины в других ступенях турбины высокого давления в облицовке камеры дожигателя.

Облицовка камеры дожигателя или выпускного сопла раскрыта в патенте США № 5465572, а облицовка основной камеры сгорания более конкретно раскрыта в патенте США № 5181379. Участок 64 облицовки 66 газотурбинного двигателя представлен кольцевой облицовкой камеры 66 сгорания, которая может представлять собой облицовку основной камеры сгорания или камеры дожигателя или облицовку выпускного сопла (фиг.7). Облицовки камеры сгорания и выпускного сопла обычно выполнены кольцевыми и расположены вокруг центральной оси 8 двигателя. Диэлектрический материал 5 расположен в кольцевой канавке 6 на обращенных внутрь горячих поверхностях или на стенке, которая составляет облицовку. Отверстия 49 пленочного охлаждения, которые представлены цилиндрическими, выполнены через внешнюю стенку 26, которая показана кольцевой.

Генератор 2 плазмы расположен на внешней горячей поверхности 54 стенки 26 выше по потоку U относительно отверстий 49 пленочного охлаждения. Отверстия 49 пленочного охлаждения расположены под углом в выходном направлении относительно потока 19 горячего газа. Отверстия 49 пленочного охлаждения продолжаются через стенку 26 от холодной поверхности 59 стенки 26 к внешней горячей поверхности 54 стенки 26, в общем, в направлении D выхода. Отверстия 49 пленочного охлаждения обычно выполнены неглубокими относительно стенки 26 и расположены под углом в выходном направлении для подачи воздуха 35 пленочного охлаждения в пограничный слой вдоль внешней горячей поверхности 54, и формируют пленку 37 охлаждения над горячей поверхностью. Воздух 35 охлаждения протекает через отверстия 49 пленочного охлаждения и радиально внутрь в направлении выхода. Система 11 экранирования пограничного слоя входящей плазмы также может использоваться в двумерном или другой формы сопле газотурбинного двигателя, или выпускной облицовки.

Настоящее изобретение было описано в качестве иллюстрации. Следует понимать, что используемая терминология предназначена для описательных целей, а не для ограничения. Хотя здесь было описано то, что считается предпочтительными вариантами выполнения настоящего изобретения, другие модификации изобретения должны быть очевидны для специалистов в данной области техники на основании приведенного здесь описания, поэтому в приложенной формуле изобретения охвачены все модификации, которые находятся в пределах сущности и объема заявленного изобретения.

1. Система (11) экранирования пограничного слоя посредством расположенной выше по потоку плазмы, содержащая отверстия (49) пленочного охлаждения, сформированные через стенку (26), указанные отверстия (49) пленочного охлаждения расположены под углом в направлении (D) выхода от холодной поверхности (59) стенки (26) к внешней горячей поверхности (54) стенки (26), и генератор (2) плазмы, расположенный выше по потоку (U) относительно отверстий (49) пленочного охлаждения для формирования плазмы (90), проходящей над отверстиями (49) пленочного охлаждения.

2. Система (11) по п.1, отличающаяся тем, что генератор (2) плазмы установлен на стенке (26).

3. Система (11) по п.2, отличающаяся тем, что генератор плазмы (2) содержит внутренние и внешние электроды (3, 4), разделенные диэлектрическим материалом (5).

4. Система (11) по п.3, отличающаяся тем, что содержит источник (100) питания переменного напряжения, подключенный к электродам для подачи высокого переменного напряжения к электродам.

5. Система (11) по п.4, отличающаяся тем, что содержит диэлектрический материал (5), расположенный в канавке (6) на внешней поверхности (54) стенки (26).

6. Система (11) по п.5, отличающаяся тем, что стенка (26) и канавка (6) имеют кольцевую форму.

7. Система (11) по п.5, отличающаяся тем, что содержит стенку (26) кольцевой формы, указанная стенка (26) образует, по меньшей мере, часть облицовки (66) кольцевой камеры сгорания газотурбинного двигателя, и канавку (6) кольцевой формы.

8. Система (11) экранирования пограничного слоя посредством расположенной выше по потоку плазмы, содержащая узел (31) лопаток, содержащий ряд (33) расположенных вдоль окружности на некотором расстоянии друг от друга и продолжающихся радиально лопаток (32) газотурбинного двигателя, каждая из лопаток (32) имеет полый аэродинамический профиль (39), проходящий в направлении пролета, аэродинамический профиль (39) имеет внешнюю стенку (26), проходящую в направлении (D) выхода и в направлении (С) хорды между противоположными передней и задней кромками (LE, ТЕ), при этом аэродинамический профиль (39) проходит радиально в направлении (S) пролета между радиально внутренним и внешним поясами (38, 40) соответственно, отверстия (49) пленочного охлаждения, сформированные через стенку (26) и расположенные под углом в направлении (D) выхода от холодной поверхности (59) стенки (26) к внешней горячей поверхности (54) стенки (26), и, по меньшей мере, один генератор плазмы (2), установленный на аэродинамическом профиле (39) перед отверстиями (49) пленочного охлаждения для формирования плазмы (90), проходящей поверх отверстий (49) пленочного охлаждения.

9. Способ работы системы (11) экранирования пограничного слоя посредством расположенной выше по потоку плазмы, заключающийся в том, что на генератор плазмы (2) подают энергию для формирования плазмы (90), проходящей в направлении (D) выхода поверх отверстий (49) пленочного охлаждения, сформированных через стенку (26), и вдоль внешней горячей поверхности (54) стенки (26).

10. Способ по п.9, отличающийся тем, что дополнительно обеспечивают работу генератора (2) плазмы в установившемся режиме или в рабочем режиме.



 

Похожие патенты:

Изобретение относится к области транспортного машиностроения, турбостроения и может найти применение в охлаждаемых лопатках высокотемпературных газовых турбин. .

Изобретение относится к области машиностроения, а именно к пустотелым лопаткам газотурбинных двигателей. .

Изобретение относится к области энергетического машиностроения, а более конкретно - к охлаждаемым лопаткам турбомашины. .

Изобретение относится к области энергетического машиностроения. .

Изобретение относится к узлу, состоящему из лопатки и рубашки охлаждения лопатки, в направляющем сопловом аппарате газотурбинного двигателя. .

Изобретение относится к лопатке газотурбинного двигателя, и в частности к лопатке, находящейся в потоке горячих газов, требующих использования специальных средств, несмотря на температурные условия и часто высокое давление

Изобретение относится к способу нанесения теплобарьерного покрытия на основе диоксида циркония на монокристаллический жаропрочный сплав на основе никеля, имеющего следующий состав, мас.%: 3,5-7,5 Сr, 0-1,5 Мо, 1,5-5,5 Re, 2,5-5,5 Ru, 3,5-8,5 W, 5-6,5 Al, 0-2,5 Ti, 4,5-9 Та, 0,08-0,12 Hf, 0,08-0,12 Si, остальное до 100% составляют Ni и неизбежные примеси

Изобретение относится к способу изготовления лопатки турбомашины, может применяться в авиационных газотурбинных двигателях и энергетических установках при изготовлении рабочих и направляющих лопаток вентиляторов, компрессоров и турбин

Изобретение относится к турбостроению и может быть использовано в последних ступенях влажно-паровых турбин

Изобретение относится к роторной лопатке и к роторному диску для газотурбинного двигателя

Изобретение относится к турбостроению и может быть использовано в высокотемпературных газовых турбинах

Изобретение относится к области турбостроения, в частности к охлаждаемым лопаткам турбомашин, применяемым в авиационных двигателях, а также в стационарных газотурбинных установках

Изобретение относится к охлаждению осевой турбомашины и, в частности, к усовершенствованию охлаждения профильной части лопатки турбины высокого давления

Изобретение относится к области двигателестроения, точнее к осевым турбинам и компрессорам газотурбинных двигателей, а конкретно к способу изготовления биметаллических блисков с охлаждаемыми лопатками, в том числе высокотемпературных газотурбинных двигателей большого ресурса
Наверх