Способ селективного получения мета-диалкилбензолов



Способ селективного получения мета-диалкилбензолов
Способ селективного получения мета-диалкилбензолов

 


Владельцы патента RU 2459796:

Ряпосов Константин Анатольевич (RU)

Изобретение относится к способу селективного получения мета-диалкилбензолов (мета-диизопроплбензола или мета-диэтилбензола) путем алкилирования бензола низшим олефином в присутствии катализатора на основе безводного хлорида алюминия с последующим разделением алкилата ректификацией. Способ характеризуется тем, что мета-диалкилбензол получают в две стадии путем синтеза на 1-ой стадии моно-алкилбензола, а на 2-ой стадии -изомеров диалкилбензола таким образом, что моно-алкилбензол получают путем взаимодействия бензола с пара-диалкилбензолом, а на 2-ой стадии получают изомеры диалкилбензола взаимодействием моно-алкилбензола с этиленом или пропиленом, а образовавшуюся на 2-ой стадии смесь изомеров диалкилбензола разделяют на индивидуальные изомеры, из которых пара-диалкилбензол возвращают на 1-ую стадию. Цель настоящего способа - достичь высокой селективности получения целевого продукта за счет оптимального сочетания реакционных процессов алкилирования и переалкилирования, а также снизить энергозатраты при организации рециклических потоков путем выбора величины конверсии исходных продуктов. 2 пр., 2 ил.

 

Настоящее изобретение относится к органическому синтезу, а именно к синтезу мета-диалкилбензолов, в частности мета-диизопропилбензола (м-ДИПБ), мета-диэтилбензола (м-ДЭБ) и технологиям их производства в промышленном масштабе. Указанные продукты могут быть использованы как исходное альтернативное сырье для получения изофталевой кислоты (ИФК) жидкофазным окислением, как показано в известных источниках [Патент Голландии №108519, 1953, Патент GB №786930, 1957, патент GB №749186, 03.03.1954], где приводятся эффективные способы получения ИФК и ТФК жидкофазным каталитическим окислением соответствующих м-ДИПБ и п-ДИПБ.

В настоящее время в качестве исходного сырья для получения ИФК в основном используют м-ксилол, получаемый при нефтепереработке из ксилольной фракции. Следует отметить, что состав ксилольной фракции состоит из изомеров ксилола (мета- и пара-), этилбензола и ряда других углеводородов, разделение которых представляет сложную и дорогостоящую задачу из-за близости температур кипения отдельных веществ, входящих в ксилольную фракцию. Поэтому проблема производства ИФК может быть решена при разработке экономически эффективного процесса получения исходного сырья - м-ДИПБ (м-ДЭБ) алкилированием бензола пропиленом (этиленом), который мог бы быть внедрен в промышленную практику.

Известно [JP 3042366 В2 от 31.05.1995; JP 3042367 В2. 31.05.1995], что изомеры ДИПБ получают в процессе реакции алкилирования бензола пропиленом и далее путем переалкилирования полученного реакционного раствора, которые проводят непрерывно в присутствии жидкого катализатора на основе комплекса хлорида алюминия с использованием 2-х (предпочтительно 3-х) реакторов. Реакцию алкилирования проводят при 50-150°С (предпочтительно 60-100°С) и давлении от 1 до 20 атм, а реакцию переалкилирования - при 50-150°С и давлении от 1 до 10 атм. Далее в них описан способ осуществления очистки и получения высокочистого м-ДИПБ путем отделения п-ДИПБ из сырого м-ДИПБ, содержащего его в качестве примеси, и приведения сырого м-ДИПБ в контакт с цеолитом с диаметром пор 0,5-0,7 нм. Недостатками этих способов являются то, что использование цеолита для процесса выделения м-ДИПБ в значительных количествах из смеси, вероятно, в промышленности будет затруднительно, а также не приводится рассмотрение утилизации получаемого в этих процессах п-ДИПБ.

В патенте [WO 2003000629 А2, от 03.04.2002] описан селективный способ получения м-ДИПБ путем контактирования сырья, содержащего мета- и орто-диизопропилбензолы, с бензолом в условиях конверсии с катализатором, содержащим молекулярное сито. На стадии контактирования происходит обогащение выходного потока м-ДИПБ. Недостатком этого способа является то, что при получении м-ДИПБ переработке подвергается лишь смесь, в которой уже отсутствует такой компонент, как п-ДИПБ, что не позволяет его использовать в процессе алкилирования бензола пропиленом. Также этот способ трудно реализовать в промышленной практике из-за сложности эксплуатации катализатора с молекулярным ситом.

Известен [GB 2398572 А1, 13.11.2003] способ синтеза п-ДИПБ с использованием исходных веществ только изопрбпилбензола (ИПБ) и пропилена. Способ предусматривает последовательность стадий:

- подачу ИПБ и пропилена в зону алкилирования, содержащую катализатор алкилирования (цеолиты);

- реакцию компонентов сырья с получением первой смеси п-ДИПБ и м-ДИПБ при температуре 149-204°С и давлении 4-70 атм;

- фракционную дистилляцию первой смеси для разделения п-ДИПБ и м-ДИПБ;

- изомеризацию м-ДИПБ, выделенного из 1-ой смеси, в присутствии катализатора переалкилирования (цеолиты) с получением второй смеси п-ДИПБ и м-ДИПБ при температуре 185-221°С;

- возвращение второй смеси на стадию фракционной дистилляции;

- извлечение полученного п-ДИПБ.

Недостатком этой работы является использование лишь ИПБ в качестве исходного сырья, т.к. сам ИПБ является продуктом реакции алкилирования бензола и пропилена. Также снижает применимость этого способа для получения при алкилировании преимущественно п-ДИПБ по сравнению с м-ДИПБ то, что используются сложные катализаторы на основе цеолитов и гетерокислот и сложный реакторный узел для проведения реакции. Кроме того, в данной работе не решается задача получения м-ДИПБ.

Наиболее близким к заявленному по способу алкилирования бензола и получения диизопропилбензолов является патент [RU №94028723 А1. 01.08.199410], где предложено получение моно- и диалкилбензолов (МАБ, ДАБ). В реакторный блок алкилирования осуществляется подача бензола и низшего олефина для их взаимодействия в присутствии катализаторного комплекса на основе безводного хлорида алюминия. После реактора раствор поступает в узел отделения катализаторного комплекса от алкилата. Последний направляют в первичный узел многоступенчатой ректификации со ступенями выделения возвратного (непрореагировавшего) бензола, МАБ, ДАБ и полиалкилбензолов (ПАБ). Часть сырой ДАБ возвращается в реактор, а другая часть сырой ДАБ перед окончательным отводом с установки (для получения целевого продукта) подвергают ДАБ четкой ректификации во вторичном узле, состоящем из 3-х ректификационных колонн. В 1-ой колонне (30 теоретических тарелок, атмосферное давление, температура внизу - 153°С, температура вверху - 190°С) отделяется легкокипящая фракция, которая возвращается в реактор алкилирования. Кубовая часть из 1-ой колонны поступает в следующую (2-ую) колонну (50 теоретических тарелок, атмосферное давление, температура внизу - 200°С, температура вверху - 180°С, флегмовое число - 10-20). В этой колонне окончательно удаляются низкокипящие продукты. Отгон возвращается в реактор. Кубовый продукт 2-ой колонны направляется в 3-ю колонну (30 теоретических тарелок, атмосферное давление, температура внизу - 193°С, температура вверху - 183°С, флегмовое число - 1,5-5). В качестве отгона 3-ей колонны является ДАБ высокого качества (целевой продукт). Часть кубового продукта из 3-й колонны направляется в первичный узел ректификации, а другая часть - в реактор алкилирования.

К недостатку этой работы можно отнести многостадийную схему выделения и очистки целевого продукта - ДАБ, а также то, что в этой работе не решалась задача разделения и получения самих изомеров ДАБ, поэтому использование ее для разработки технологии получения м-ДИПБ (м-ДЭБ) носит ограниченный характер.

Целью предлагаемого способа является разработка технологического процесса получения низших диалкилбензолов, а именно: мета-диизопропилбензола (м-ДИПБ), а также мета-диэтилбензола (м-ДЭБ), как исходного сырья для производства ИФК, со следующими требованиями:

- максимально использовать огромную промышленную практику производства изопропилбензола (ИПБ) путем алкилирования бензола пропиленом в присутствии катализатора на основе безводного хлорида алюминия;

- достичь высокой селективности получения м-ДИПБ (м-ДЭБ) за счет оптимального сочетания реакционных процессов алкилирования и переалкилирования;

- снижение энергозатрат при организации рециклических потоков путем выбора величины конверсии исходных продуктов.

Указанная цель достигается тем, что процесс получения м-ДИПБ (м-ДЭБ) осуществляется в двух реакционных стадиях и в стадии выделения м-ДИПБ (м-ДЭБ) из алкилата. Схема процесса показана на фиг.1.

На 1-ой стадии получают моноалкилбензолы - изопропилбензол (ИПБ) или этилбензол (ЭБ) путем взаимодействия п-ДИПБ или п-ДЭБ с бензолом соответственно, возвращаемого со стадии разделения, в присутствии безводного хлорида алюминия в качестве катализатора.

На 2-ой стадии полученный на 1-ой стадии ИБП/ЭБ в результате реакции алкилирования его с пропиленом/этиленом и в присутствии безводного хлорида алюминия превращается в изомеры ДИПБ - м-ДИПБ и п-ДИПБ (изомеры ДЭБ - м-ДЭБ и п-ДЭБ).

На 3-ей стадии (разделение) известным способом производится разделение продуктов реакции путем ректификации. При этом непрореагировавшие продукты (бензол, ИПБ, ЭБ) возвращаются в реакционный цикл на 1 и 2 стадии, а именно: п-ДИПБ (п-ДЭБ) - на первую стадию получения моноалкилбензолов (переалкилирование), ИПБ - на вторую стадию (аликилирование), а целевой продукт - м-ДИПБ/м-ДЭБ выводится из технологического процесса в качестве товарного продукта.

Сущность изобретения поясняется на фиг.2, где представлена принципиальная схема технологического процесса получения низших диалкилбензолов (м-ДИПБ, м-ДЭБ).

В реакторе 2 (фиг.2) п-ДИПБ (п-ДЭБ), возвращаемый со стадии разделения (колонна 7), взаимодействует с бензолом, представляющим собой смесь свежего и выделенного на стадии разделения в колонне 5, в присутствии катализатора - безводного хлорида алюминия - и превращается в моно-алкилбензол - ИПБ (ЭБ). Узел приготовления катализатора на схеме не показан. Катализатор готовят любым общеизвестным из уровня техники способом (сам катализатор и способ его приготовления не являются объектом данного изобретения). Полученный в реакторе 2 ИПБ (ЭБ) вместе с остаточным непрореагировавшим бензолом поступает в реактор 1, куда подается также и возвратный ИПБ (ЭБ) со стадии разделения (колонна 6). В реакторе 1 осуществляется реакция алкилированя ИПБ (ЭБ) и бензола пропиленом (этиленом) до образования смеси изомеров м-ДИПБ и п-ДИПБ (м-ДЭБ и п-ДЭБ) в соотношении (2-2,5):1. (Установка может содержать один или несколько реакторов алкилирования, который может быть любым из известных в уровне техники.)

Полученный в реакторе 1 алкилат поступает в разделительный аппарат 3, где происходит отделение катализатора, который может многократно возвращаться в реакционный цикл. А раствор, освобожденный от катализатора, поступает на стадию отмывки в аппарат 4 от остатков катализатора водой и щелочью. После отделения водного слоя органическая часть подается на схему разделения, состоящую из 3-х ректификационных колонн 5, 6, 7.

В 1-ой ректификационной колонне (5) отделяется бензол, который возвращается в реактор 2. Кубовый продукт 1-ой колонны направляется в колонну 6, где происходит отгон ИПБ (ЭБ), который возвращается в реактор 1.

В ректификационную колонну 7 поступает смесь изомеров диалкилбензолов. В этой колонне отгоняется целевой продукт м-ДИПБ (м-ДЭБ), а п-ДИПБ (п-ДЭБ) возвращается на переработку в реактор 2.

В зависимости от требуемого качества ИФК, получаемой на основе жидкофазного окисления м-ДИПБ (м-ДЭБ), последний может содержать 95-99,5% основного вещества в своем составе.

Фиг.2: Принципиальная схема технологического процесса получения низших диалкилбензолов (м-ДИПБ, м-ДЭБ).

На фигуре приведена принципиальная технологическая схема, поэтому вспомогательное технологическое оборудование: кипятильники и холодильники ректификационных колонн, насосы, промежуточные емкости, средства автоматизации и контроля и т.д., на ней не приведено.

Ниже приводятся примеры конкретного воплощения изобретения, которые иллюстрируют, но не ограничивают его объем.

Пример 1

В реактор 2 (фиг.2) непрерывно подается бензол в количестве 251,8 г/ч, п-ДИПБ - 137,0 г/ч, катализатор (AlCl3) - 22,6 г/ч. Содержимое реактора перемешивается при температуре 68-72°С и времени пребывания - 120 минут. Из реактора 2 смесь непрерывно поступает в реактор 1, куда также подаются ИПБ в количестве - 405,9 г/ч, AlCl3 - 11,8 г/ч, пропилен со скоростью 1,15 нл/мин при времени пребывания в реакторе 60 минут и при температуре 78-80°С. Затем смесь из реактора выгружают. Сначала из продуктов реакции (алкилата) отделяют декантированием катализатор (возвращают в цикл). Полученный алкилат промывают водой и раствором щелочи. После этого с помощью ректификации известным приемом выделяют бензол в количестве - 131,9 г/ч, ИПБ (возвращаемый продукт) - 202,9 г/ч, м-ДИПБ (целевой продукт) - 249 г/ч и п-ДИПБ (возвращаемый продукт) в виде кубового остатка - 137,0 г/ч.

Пример 2

В реактор 2 (фиг.2) непрерывно подается бензол в количестве 172,4 г/ч, п-ДЭБ - 77,6 г/ч, катализатор (AlCl3) - 14,5 г/ч. Содержимое реактора перемешивается при температуре 78-82°С и времени пребывания - 120 минут. Из реактора 2 смесь непрерывно поступает в реактор 1, куда также подаются ЭБ в количестве - 245,4 г/ч, AlCl3 - 7,6 г/ч, этилен со скоростью - 0,79 нл/мин при времени пребывания в реакторе 60 минут и при температуре 80-83°С. Затем смесь из реактора выгружают. Сначала из продуктов реакции (алкилата) отделяют декантированием катализатор (возвращают в цикл). Полученный алкилат промывают водой и раствором щелочи. После этого с помощью ректификации известным приемом выделяют бензол в количестве 90,3 г/ч, ЭБ (возвращаемый продукт) - 122,7 г/ч, м-ДЭБ (целевой продукт) - 141 г/ч и п-ДЭБ (возвращаемый продукт) в виде кубового остатка - 77,6 г/ч.

Приведенные примеры показывают возможность достижения нового технического результата, обусловленного целью данного изобретения.

Способ селективного получения мета-диалкилбензолов (мета-диизопроплбензола или мета-диэтилбензола) путем алкилирования бензола низшим олефином в присутствии катализатора на основе безводного хлорида алюминия с последующим разделением алкилата ректификацией, отличающийся тем, что мета-диалкилбензол получают в две стадии путем синтеза на 1-й стадии моно-алкилбензола, а на 2-й стадии - изомеров диалкилбензола таким образом, что моно-алкилбензол получают путем взаимодействия бензола с пара-диалкилбензолом, а на 2-й стадии получают изомеры диалкилбензола взаимодействием моно-алкилбензола с этиленом или пропиленом, а образовавшуюся на 2-й стадии смесь изомеров диалкилбензола разделяют на индивидуальные изомеры, из которых пара-диалкилбензол возвращают на 1-ю стадию.



 

Похожие патенты:

Изобретение относится к способу получения 2-изопропил-п-ксилола и 2,5-диизопропил-п-ксилола путем алкилирования п-ксилола пропиленом в жидкой фазе, характеризующемуся тем, что алкилированию подвергают п-ксилол при температуре 70-90°С и на первой ступени алкилирование проводят в присутствии катализатора AlCl3 до достижения конверсии исходного углеводорода в присутствии катализаторов AlCl3 до достижения конверсии исходного углеводорода в пределах 40-90% и накопления в алкилате индивидуального моно-изопропил-п-ксилола 30-50%, далее 5-моно-изопропил-п-ксилол подвергают алкилированию на 2-й ступени в присутствии AlCl2·H2 PO4 таким образом, что после достижения в алкилате суммарного содержания изомеров 2,5-, 2,3-, 2,6-ди-изопропил-п-ксилола 30-50% прекращают подачу пропилена и выдерживают полученный алкилат при температуре 70-90°С в течение 2-6 часов до достижения концентрации 2,5-ди-изопропил-п-ксилола не менее 95% с последующим выделением целевого продукта известными приемами.

Изобретение относится к способу получения 1,3,5,7-тетраалкиладамантана общей формулы где R1=R2=R3 =R4=Et;R1=R2 =R3=R4=н-Pr; R1=R2 =Me, R3=R4=Et; R1=R2 =Me, R3=R4= н-Pr;R 1=R2=R3= н-Pr, а также смесей полалкиладамантанов в присутствии электрофильных катализаторов, характеризующемуся тем, что адамантан, 1,3-диметиладамантан или смесь полиалкиладамантанов с общим числом атомов углерода 11-20 алкилируют олефинами СnН 2n, где n=2 или 3, в присутствии каталитической системы брутто формулы АlХ3·СкНаlr , где Х=Cl, Hal=Вr, k=0, r=2, или Х=Br, Hal=Cl, k=1, r=4, и процесс проводят в растворе СН2Х2 (X=Cl, Br) при 15-25°С в течение 2-3 ч при мольном отношении [адамантан]:[катализатор]=(15-10):1.

Изобретение относится к получению мономеров, используемых в производстве высокомолекулярных соединении, конкретно к алкилированию бензола низшими олефинами в алкилаторе.
Изобретение относится к области нефтехимии, конкретно к процессу получения этилбензола алкилированием бензола этиленом в присутствии каталитического комплекса на основе хлорида алюминия.

Изобретение относится к области получения синтетических моторных смазочных масел, а именно к получению основы низкозастывающего синтетического моторного масла, пригодного для всесезонного использования.

Изобретение относится к области нефтехимии, в частности к получению моноалкилбензолов взаимодействием бензола с олефинами в присутствии хлористого алюминия с рециклом полиалкилбензолов.

Изобретение относится к технологии получения алкилбензолов в присутствии катализатора в виде металлоорганического комплекса на основе хлорида алюминия и может быть использовано при отмывке от катализатора, разложения хлорорганических соединений и нейтрализации алкилатов.

Изобретение относится к способу превращения исходного материала, содержащего метан, в синтез-газ и ароматический углеводород (углеводороды). .
Изобретение относится к способу получения ароматических углеводородов, включающему конверсию в атмосфере азота при его давлении 0,3-0,4 МПа предварительно нагретого до температуры 200-350°С диметилового эфира (ДМЭ) путем его пропускания через предварительно нагретый в атмосфере азота до температуры 330-370°С слой катализатора на основе цеолита типа ZSM-5 с SiO2/Аl2O3=60-83, содержащего не более 23,0% оксида алюминия, не более 0,09% оксида натрия и цинк в пределах 2-5%, с поддержанием температуры в объеме катализатора 400-450°С путем регулирования скорости подачи ДМЭ, продукты реакции, полученные после прохождения катализатора, охлаждают до температуры 200-350°С и пропускают через второй слой такого же катализатора, предварительно нагретого в атмосфере азота до температуры 330-370°С с поддержанием температуры в объеме катализатора 400-450°С путем регулирования скорости подачи продуктов реакции, полученных после прохождения первого слоя катализатора.
Изобретение относится к способу получения высокомолекулярных ароматических углеводородов путем каталитической конверсией 96%-ного этанола или смеси этанол-изобутанол (3:1) при 400°С, объемной скорости по жидкому сырью 2 ч-1, давлении 0,1-5,0 МПа на цеолитсодержащем катализаторе.

Изобретение относится к способу ароматизации неароматических углеводородов, содержащихся в гидрированной фракции C6 -C8 пироконденсата. .

Изобретение относится к способу получения 2-изопропил-п-ксилола и 2,5-диизопропил-п-ксилола путем алкилирования п-ксилола пропиленом в жидкой фазе, характеризующемуся тем, что алкилированию подвергают п-ксилол при температуре 70-90°С и на первой ступени алкилирование проводят в присутствии катализатора AlCl3 до достижения конверсии исходного углеводорода в присутствии катализаторов AlCl3 до достижения конверсии исходного углеводорода в пределах 40-90% и накопления в алкилате индивидуального моно-изопропил-п-ксилола 30-50%, далее 5-моно-изопропил-п-ксилол подвергают алкилированию на 2-й ступени в присутствии AlCl2·H2 PO4 таким образом, что после достижения в алкилате суммарного содержания изомеров 2,5-, 2,3-, 2,6-ди-изопропил-п-ксилола 30-50% прекращают подачу пропилена и выдерживают полученный алкилат при температуре 70-90°С в течение 2-6 часов до достижения концентрации 2,5-ди-изопропил-п-ксилола не менее 95% с последующим выделением целевого продукта известными приемами.
Изобретение относится к нефтехимии, а именно к способу получения ароматических углеводородов (смеси бензола, толуола, ксилолов и этилбензола) из синтез-газа (смесь моноксида углерода с газообразным водородом) в присутствии бифункционального катализатора.

Изобретение относится к способу получения моноалкилбензолов путем алкилирования бензола, характеризующемуся тем, что в качестве алкилирующего агента используют метан, пропан или техническую пропан-бутановую смесь, реакцию проводят в одну стадию в барьерном электрическом разряде.
Изобретение относится к слоистой композиции, способу ее приготовления и способу конверсии углеводорода с ее применением. .

Изобретение относится к способу ароматизации алканов, заключающемуся в контактировании алканов, содержащих от одного до четырех углеродных атомов, с катализатором Pt/ZSM-5, содержащим платину, осажденную на MFI цеолит, решетка которого состоит из алюминия, кремния и кислорода.
Изобретение относится к способу получения ароматических углеводородов и низших олефинов, включающему каталитическую дегидроциклизацию углеводородного сырья в присутствии цинксодержащего цеолитного катализатора при повышенных температуре и давлении, разделение продуктов дегидроциклизации на продукт А - ароматические углеводороды С6+, и продукт В - смесь неароматических углеводородов с водородом, последующее гидродеалкилирование продукта А с получением товарного бензола, и пиролиз продукта В с получением низших олефинов, и характеризующемуся тем, что в качестве сырья дегидроциклизации используют парафины С2-С6, процесс проводят под давлением 0,9-1,3 МПа, продукт А, после отделения от него фракции С10+, подвергают гидродеалкилированию, из продуктов гидродеалкилирования выделяют товарный бензол, метановую и этановую фракции, этановую фракцию и продукт В, или продукт В, после отделения от него более 50 об.% метановодородной фракции, направляют на пиролиз, из газообразных продуктов пиролиза выделяют товарные этилен и пропилен, жидкие продукты пиролиза - пироконденсат, содержащий ароматические углеводороды, подвергают каталитическим гидрированию и гидрообессериванию и последующему гидродеалкилированию с получением товарного бензола, метановой и этановой фракций, последнюю рециклизуют на пиролиз.

Изобретение относится к способу превращения алифатического углеводорода с низким числом углеродных атомов в более высокомолекулярные углеводороды, включающие ароматические углеводороды, включающий контактирование исходного материала, содержащего упомянутый алифатический углеводород, с катализатором дегидроциклизации в условиях, эффективных для превращения упомянутого алифатического углеводорода в ароматические углеводороды и получения отходящего потока, включающего ароматические углеводороды и водород, где упомянутый катализатор дегидроциклизации включает металл, выбранный из группы, включающей молибден, рений и вольфрам, и молекулярное сито, включающее ZSM-5 и где отношение количества всех участков кислот Бренстеда в молекулярном сите к количеству упомянутого металла составляет меньше 0,4 моля/моль упомянутого металла
Наверх