Способ поглощения энергии лазерного термоядерного синтеза и устройство для его осуществления


 


Владельцы патента RU 2461083:

Чивель Юрий Александрович (BY)

Изобретение относится к области термоядерной энергетики и может быть использовано при разработке и создании станций теплоснабжения и электростанций, использующих термоядерную энергию. Способ поглощения энергии лазерного термоядерного синтеза состоит в превращении энергии нейтронного потока и потока γ-квантов в тепловую энергию. Поглощение энергии осуществляется теплоносителем, омывающим первую по ходу потока энергии стенку реактора, а первая стенка максимально прозрачна для нейтронного потока и потока γ-квантов. Устройство для поглощения энергии лазерного термоядерного синтеза содержит корпус реактора с каналами для прокачки теплоносителя. При этом в качестве теплоносителя используется жидкий, газовый или гетерогенный поглотитель нейтронного потока и потока γ-квантов, а первая стенка изготовлена из стеклокерамики, прозрачной для нейтронного потока и потока γ-квантов. Техническим результатом является повышение эффективности процесса преобразования энергии потока частиц в тепловую энергию. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к области термоядерной энергетики и может быть использовано при разработке и создании станций теплоснабжения и электростанций, использующих термоядерную энергию.

Известен способ поглощения энергии лазерного термоядерного синтеза [1], при котором энергия нейтронов и излучения поглощается в слое углеродного композита, составляющего конструкцию первой стенки, и передается теплопроводностью гетерогенному теплоносителю (гелий + гранулы Li2O), циркулирующему в трубах, проложенных в первой стенке. Недостатком данного способа является интенсивное разрушение материалов первой стенки и необходимость их частой замены, а также загрязнение камеры продуктами разрушения.

Наиболее близким к предлагаемому способу является представленный в [2] способ, при котором почти полное поглощение энергии осуществляется в струях жидкого теплоносителя, образующих завесу вокруг термоядерной мишени. Недостатком данного способа является его сложность и ограничения, накладываемые на атмосферу в реакторной полости в связи с испарением жидкости.

Задачей заявляемого изобретения является упрощение и удешевление получения энергии термоядерного синтеза. Для решения поставленной задачи предложен способ поглощения энергии лазерного термоядерного синтеза, который состоит в превращении энергии нейтронного потока и потока γ-квантов в тепловую энергию. Новым по мнению автора является то, что поглощение энергии осуществляется теплоносителем, омывающим наружную поверхность первой по ходу потока энергии стенки реактора, а первая стенка изготовлена из материала с низким коэффициентом поглощения нейтронного потока и потока γ-квантов, например из стеклокерамики. К настоящему времени уже разработаны стекла и стеклокерамика, устойчивые к воздействию нейтронного и рентгеновского излучения [3, 4] в течение длительного времени, прежде всего по отношению к окрашиванию, и имеющие низкий коэффициент поглощения гамма-квантов, что обеспечивает объемность поглощения. Теплоноситель, имеющий большой коэффициент поглощения нейтронов и γ-квантов, может быть изготовлен в простейшем случае на основе воды или водного раствора солей металлов, BaI например, с введенными в него микро- и наночастицами тяжелых металлов.

Известно устройство [5] для поглощения энергии лазерного термоядерного синтеза, которое содержит корпус реактора с первой стенкой из материалов на основе графита с каналами для прокачки теплоносителя. В качестве теплоносителя используется гетерогенный теплоноситель. Недостатком данного устройства является сильная эрозия стенок. Наиболее близким по технической сущности к заявляемому устройству является реактор с жидким бланкетом из струй лития [2], окружающим мишень.

Недостатком данного устройства является распыление лития, сложность организации жидкого бланкета. Для решения поставленной задачи предложено устройство для поглощения энергии лазерного термоядерного синтеза, которое содержит корпус реактора с каналами для прокачки теплоносителя. Новым по мнению автора является то, что в качестве теплоносителя используется жидкий, газовый или гетерогенный поглотитель нейтронного потока и потока γ-квантов, а первая стенка изготовлена из стеклокерамики, прозрачной для нейтронного потока и потока γ-квантов.

Сущность изобретения поясняется чертежом, на котором представлен общий вид предлагаемого устройства (фиг.1). Устройство содержит сферическую реакторную камеру 1 с окнами для ввода лазерных пучков 2, между первой 3 и задней стенкой камеры 4 расположен канал для прокачки теплоносителя 5, заполненный жидким, газовым или гетерогенным поглотителем 6 энергии продуктов термоядерной реакции, инициированой в сферической мишени 7 лазерным излучением. Первая стенка 3 изготовлена из материала, имеющего высокое пропускание для нейтронного потока и потока γ-квантов. Теплоноситель 5, наоборот, имеет высокие коэффициенты поглощения этих потоков. Устройство работает следующим образом. При инициировании термоядерной реакции в мишени 6 импульсным лазерным излучением, которое вводят через окна 2 в камеру и фокусируют на мишень, продукты реакции - нейтроны (80%), γ-кванты (10%) проходят через квазипрозрачную для них первую стенку 3 и поглощаются в слое теплоносителя 7, прокачиваемого в канале 5. Поток нагретого теплоносителя выносит энергию из камеры во внешний контур реактора. В качестве материала первой стенки могут быть использованы специальные стекла или стеклокерамика, стойкие к нейтронному и γ-излучению. Уже при нынешнем уровне технологии получения стеклокерамики использование в стеклокерамике элементов с малым атомным весом позволяет в 10-100 раз увеличить пробег рентгеновских квантов вплоть до см [3, 4]. В качестве теплоносителя-замедлителя можно использовать воду или водные растворы металлических солей (BaI, например). Слой воды толщиной ~0,3 м обеспечит замедление нейтронов с энергией до 10 МэВ до тепловых энергий и вывод термоядерной энергии в наружный теплообменник. Для поглощения потока γ-квантов в воду вводятся микро- и наночастицы тяжелых металлов (Cu, Au и т.д). Использование высокотемпературных органических теплоносителей-замедлителей позволит повысить тепловые характеристики реактора. Возможно применение и жидкого металла, Li например, с температурой плавления ~450 K. Рабочие температуры для стекол ~750 K, для стеклокерамики ~1000 K.

Список литературы

1. Kulcinski G. et al // Fusion Technology and Design. 2002. V.60. P.3.

2. Moir R. et al // Fusion Technology. 1994. V.25. P.5.

3. Margaryan A et al // Physics and Chemistry of Rare-Earth Ions Glasses. Zurich: TTP Inc. 2008 г.

4. G.Appleby, C.Bartle. Current Applied Phys. V.6, pp.389-392. 2007.

5. Дюдерштадт Дж., Мозес Г. // Инерциальный термоядерный синтез. 1984. - М.: Энергоатомиздат. С.265.

1. Способ поглощения энергии лазерного термоядерного синтеза, состоящий в превращении энергии нейтронного потока и потока γ-квантов в тепловую энергию, отличающийся тем, что поглощение энергии осуществляется теплоносителем, омывающим первую по ходу потока энергии стенку реактора, а первая стенка а изготовлена из материала с низким коэффициентом поглощения нейтронного потока и потока γ-квантов, например из стеклокерамики.

2. Устройство для поглощения энергии лазерного термоядерного синтеза, содержащее камеру реактора с каналами для прокачки теплоносителя, отличающееся тем, что в качестве теплоносителя используется жидкий, или газовый, или гетерогенный поглотитель нейтронного потока и потока γ-квантов, а первая стенка изготовлена из стеклокерамики, прозрачной для нейтронного потока и потока γ-квантов.



 

Похожие патенты:

Изобретение относится к области управляемого синтеза и может быть применено в защитной части модуля бланкета термоядерного реактора. .

Изобретение относится к композициям, необратимо аккумулирующим газообразный водород, и может быть использована, например, для улавливания водорода, освобождаемого при радиолизе в блоках радиоактивных отходов.

Изобретение относится к конструкциям мишеней для получения термоядерных реакций в реакторах для ядерного синтеза. .

Изобретение относится к области физики плазмы. .

Изобретение относится к физике высокотемпературной плазмы и может найти применение в управляемом термоядерном синтезе, в радиационном материаловедении, для исследований в физике космической плазмы.

Изобретение относится к проблеме управляемого термоядерного синтеза и может найти применение в качестве сильноточного индукционного ускорителя предпочтительно положительно заряженных частиц и ионов, а также для создания пучка нейтронов.

Изобретение относится к области инерционного термоядерного синтеза и плазменной техники и может быть использовано для создания источников проникающих излучений. .

Изобретение относится к первой стенке термоядерного реактора. .

Изобретение относится к термоядерным реакторам, в частности к элементам первой стенки реактора. .

Изобретение относится к мишеням для ядерных реакций для получения интенсивных потоков быстрых монохроматических нейтронов, в частности к нейтронным генераторам. .

Изобретение относится к области управляемого ядерного синтеза и может быть применено в системах для пневматической транспортировки тритийвоспроизводящих детекторов в канале наработки трития бланкета термоядерного реактора

Изобретение относится к области управляемого ядерного синтеза и может быть применено в системах для пневматической транспортировки тритийвоспроизводящих детекторов в канале наработки трития бланкета термоядерного реактора

Изобретение относится к области термоядерного синтеза

Изобретение относится к катализаторам сжигания водорода. Описан катализатор сжигания водорода, включающий каталитически активный металл, нанесенный на носитель катализатора, образованный неорганическим оксидом, при этом носитель включает органический силан по меньшей мере с одной алкильной группой из трех или менее атомов углерода, путем замещения присоединенной к концу каждой из определенной части или ко всем гидроксильным группам на поверхности носителя; и каталитически активный металл нанесен на носитель катализатора, включающий присоединенный к нему органический силан. Описан способ получения указанного выше катализатора и его использование в сжигании водорода, в частности, в реакторе каталитического окисления, размещенном в установке извлечения трития. Технический результат - увеличение активности катализатора. 4 н. и 3 з.п. ф-лы, 2 ил., 5 табл., 5 пр.

Заявленное изобретение относится к средствам для осуществления термоядерного синтеза. Заявленное устройство включает замкнутую кольцевую (тороидальную) полость, где обеспечивается непрерывное взаимодействие встречных потоков ускоренных частиц и ионов. При этом предусмотрено наличие двух полых индукционных ускорителей в виде концентрических труб-стенок, выполненных из непроводящего материала, например жаропрочного стекла или керамики, композита, и образующих две полости, из которых одна, межстеночная, заполняется проводником второго рода (и распорками для обеспечения их геометрии), а вторая, полость внутренней трубы, используется в качестве плазменного реактора. Указанные стенки изогнуты в виде полуколец с удлиненными цилиндрическими концами, соединяемыми бандажами, сечения которых аналогичны сечениям стенок труб. Верхние части бандажей выполняют из металла и используют для соединения с конденсатором через разрядник и проводником второго рода, образуя последовательную цепь, а внутренние части, так же, как и стенки, выполнены из непроводящего материала. Техническим результатом является возможность оптимизации размеров устройства и процесса преобразования ядерной энергии. 1 з.п. ф-лы, 3 ил.

Изобретение относится к физике высокотемпературной плазмы и может найти применение в управляемом термоядерном синтезе, в радиационном материаловедении, для исследований в физике космической плазмы. В заявленном изобретении используется механизм неиндукционной генерации тороидального затравочного тока за счет нагрева ионов малой добавки, движущихся по потато орбитам, при помощи широкополосного генератора излучения на ионно-циклотронной частоте в конечной области близи магнитной оси установки. Техническим результатом является создание затравочного тока, необходимо для создания стационарного токамака-реактора. 1 з.п. ф-лы.

Изобретение относится к способам аварийного энергообеспечения собственных нужд АЭС. При полном обесточивании, пар, генерируемый в паропроизводящей установке за счет остаточного тепловыделения активной зоны реактора, направляется в дополнительную паротурбинную установку, в которой вырабатывает необходимую электроэнергию для электроснабжения собственных нужд станции в течение времени, необходимого для восстановления связи с энергосистемой или штатной работы станции. Дополнительная паротурбинная установка подключена к котлу-утилизатору и к устройству парораспределения перед цилиндром высокого давления основной турбины посредством трубопровода, пароводородный перегреватель соединен с системой для получения водорода и кислорода, оборудование, входящее в состав парогазовой установки, выведено за территорию площадки АЭС. Техническим результатом является обеспечение электроснабжения собственных нужд АЭС при полном обесточивании, с возможностью расхолаживания водоохлаждаемых реакторов, в штатном режиме за счет использования энергии остаточного тепловыделения активной зоны реактора и парогазовой установки, эффективно используемой для повышения маневренности энергоблока АЭС в эксплуатационных режимах. 1 ил.

Заявленная группа изобретений относится к средствам для исследований протекания реакций ядерного синтеза с участием ядер изотопов водорода. В заявленном изобретении предусмотрено образование металлического кристаллического тела (МКТ) его конденсацией из паров металла, внедрение в МКТ атомов изотопов водорода так, чтобы хотя бы часть атомов с ядрами водорода оказывалась на наименьшем возможном расстоянии друг от друга. При этом внедрение атомов изотопов водорода осуществляется одновременно с образованием самого МКТ конденсацией паров металла в среде газообразных изотопов водорода, а также слиянием металлических микрокристаллов, полученных конденсацией паров металла в среде газообразных изотопов водорода и их отжигом в среде газообразных изотопов водорода. Заявленное устройство содержит следующие узлы, соединенные газопроводящим трубопроводом с вентилями: источник газообразных изотопов водорода; реактор с возможностью испарения металла и конденсации паров металла в МКТ в среде газообразных изотопов водорода, средство регулирования давления газовой среды в источнике газообразных изотопов водорода и в реакторе; средства контроля давления данной газовой среды, а также средства регистрации продуктов ядерных реакций. Техническим результатом является создание условий для повышения интенсивности протекания ядерных реакций. 2 н. и 13 з.п. ф-лы, 10 ил.

Изобретение относится к области энергетики. В заявленном способе предусмотрено осуществление ядерной или термоядерной реакции путем подрыва заряда внутри массивного металлического тела, размещенного в прочном корпусе, при этом энергия взрыва превышает энергию теплоты для расплавления металлического тела, а теплота, образующаяся в теле от взрыва, утилизируется через прочный корпус. При этом по мере остывания тела взрывы в нем периодически повторяются, и каждый следующий взрыв осуществляется в этом теле после перехода его в твердое состояние. Энергия взрыва заряда может быть достаточна для превращения расплава тела в пар. Техническим результатом является возможность оптимизации габаритов используемого устройства. 1 з.п. ф-лы, 8 ил.
Наверх