Способ автоматического управления двухстадиальным замкнутым циклом мокрого измельчения

(57) Изобретение относится к области обогащения руд полезных ископаемых и может быть использовано на обогатительных фабриках цветной металлургии. В способе автоматического управления двухстадиальным замкнутым циклом мокрого измельчения осуществляют регулирование первой стадии по ее оптимальной производительности и поддержанию соотношения руда-вода, и второй стадии - по заданной конечной плотности слива. Регулирование плотности слива классификатора первой стадии проводят в зависимости от величины циркуляционной нагрузки второй стадии. Регулирование плотности слива классификатора первой стадии и стабилизацию гранулометрического состава по расчетному классу крупности слива классификатора второй стадии измельчения производят в соответствии с условиями Qсл→Qсл max, β = βзад, где Q - производительность по сливу, Q max - максимальная производительность по сливу, β - содержание расчетного класса, βзад - заданное значение содержания расчетного класса. Техническим результатом является повышение надежности и качества управления двухстадиальным замкнутым циклом мокрого измельчения. 2 ил.

 

Изобретение относится к области обогащения руд полезных ископаемых и может быть использовано на обогатительных фабриках цветной металлургии, имеющих аналогичные циклы измельчения.

Известен способ автоматического управления двухстадиальным циклом мокрого измельчения (а.с. SU №607591, опубл. 24.04.78), в котором обеспечение максимальной производительности цикла измельчения достигается за счет повышения точности регулирования. В этом способе измеряют крупности продукта измельчения на выходах стержневой мельницы, классификатора и шаровой мельницы, изменение расхода воды в стержневую мельницу по измеренному значению крупности продукта на ее выходе, изменение расхода воды в классификатор по измеренным значениям крупности продукта на его выходе и на выходе стержневой мельницы, изменение расхода воды в шаровую мельницу по измеренным значениям крупности продукта на ее выходе и на выходе стержневой мельницы и изменение расхода руды, а так же с целью повышения качества управления, измеряют весовой расход и удельный вес руды, по измеренным параметрам вычисляют объемный расход руды и используют вычисленное значение для изменения расхода руды и воды в стержневую мельницу.

Недостатком этого способа является то, что характеристики электрических величин зависят от состояния энергетической системы питания мельниц, что приводит к ложным срабатываниям, искажениям информации. Этот способ не обеспечивает оптимальное заполнение мельниц.

Также известен способ автоматического управления двухстадиальным циклом мокрого измельчения (а.с. SU №1787543, опубл. 15.01.93), в котором измерение расхода руды проводят в зависимости от величины активной мощности двигателя устройства транспорта питания мельницы первой стадии. В этом способе измеряют расход руды и корректируют расход руды в зависимости от величины активной мощности двигателя устройства транспорта питания мельницы первой стадии, измеряют изменение расходов воды в мельницы в зависимости от величины активной мощности двигателей устройств транспорта питания мельниц, а также с целью повышения качества управления измеряют разность активных мощностей двигателей устройств транспорта питания мельницы и корректируют задание величины расхода руды, причем коррекцию задания величины расхода руды осуществляют в обратно-пропорциональной зависимости от разности активных мощностей двигателя устройств транспорта питания мельницы.

Недостатком этого способа является то, что зависимость мощности от величины нагрузки имеет неоднозначный характер. Кроме того, параметр мощности подвержен влиянию различного рода помех, вследствие чего имеет место недостаточно точное регулирование процесса измельчения.

Известен способ автоматического регулирования двухстадиального цикла мокрого измельчения (а.с. SU №129568, опубл. 01.12.1959), принятый за прототип. Этот способ осуществляется в мельницах, работающих в замкнутом цикле с классификаторами, с направлением слива классификатора первой стадии в классификатор второй стадии и регулированием первой стадии по ее оптимальной производительности и поддержанию заданного соотношения руда - вода, а во второй стадии - по заданной конечной плотности слива при регулировании распределения нагрузок между первой и второй стадиями путем изменения плотности слива классификатора первой стадии, а также регулирование плотности слива классификатора первой стадии в зависимости от величины циркуляционной нагрузки второй стадии.

Недостатком прототипа является то, что применение ограниченного числа управляющих воздействий приводит к тому, что изменение физико-механических свойств питания мельниц вызывает изменение количества питания, поступающего в мельницу второй стадии, и изменяет ее загрузку, отличную от заданного уровня. Это приводит к аварийной ситуации и неэффективному использованию технологического оборудования.

Техническим результатом изобретения является повышение надежности и качества управления двухстадиальным замкнутым циклом мокрого измельчения.

Технический результат достигается тем, что в способе автоматического управления двухстадиальным замкнутым циклом мокрого измельчения, включающем регулирование первой стадии по ее оптимальной производительности и поддержанию соотношения руда - вода, а во второй стадии - по заданной конечной плотности слива, регулирование плотности слива классификатора первой стадии в зависимости от величины циркуляционной нагрузки второй стадии, дополнительно регулирование плотности слива классификатора первой стадии и стабилизацию гранулометрического состава по расчетному классу крупности, слива классификатора, второй стадии измельчения производят в соответствии с условиями Qсл→Qслmax, β=βзад где Qсл - производительность по сливу, Qслmax - максимальная производительность по сливу, β - содержание расчетного класса, βзад - заданное значение содержания расчетного класса.

Сущность изобретения поясняется чертежами, где на фиг.1 представлена структурная схема управления двухстадиальным замкнутым циклом мокрого измельчения, фиг.2 - технологическая схема двухстадиального замкнутого цикла мокрого измельчения.

Способ реализуют в рамках АСУТП при трехуровневом управлении. На первом (нижнем) уровне компенсируют высокочастотные возмущения, связанные с колебаниями показателей материальных потоков с периодом в несколько минут. На втором (среднем) уровне стабилизируют среднечастотные колебания показателей качества с периодом в десятки минут. На третьем (верхнем) уровне компенсируют возмущения, обусловленные длительными изменениями технологического режима и показателей качества с периодом часы и более.

Руда ленточными транспортерами подается в мельницу (7) первой стадии, работающую в замкнутом цикле с классификатором (4). Датчиком (1) веса руды измеряется вес руды. Установлен датчик (8) веса мельницы (7) первой стадии - измеряют вес мельницы (7) (получают значения веса руды и песков от классификатора (4)). В головную часть мельницы (7) вместе с рудой подают воду в количестве, обеспечивающем при измельчении требуемое соотношение руда - вода. Установлен датчик (5) расхода воды для измерения расхода воды, подаваемой в мельницу (7) первой стадии. Слив мельницы (7) первой стадии поступает в зумпф (9), откуда насосами перекачивается в классификатор (4) первой стадии. Установлены датчик (6) расхода воды, подаваемой на классификатор (4) первой стадии и датчик (10) циркуляции первой стадии, датчик (3) давления на входе в классификатор (4). Слив первого классификатора (4) направляется на межцикловую флотацию (21), а пески возвращаются на доизмельчение в мельницу (7) первой стадии. Установлен датчик (2) плотности слива на выходе из классификатора (4) первой стадии. Хвосты межцикловой флотации (21) объединяются с промпродуктом цикла обогащения и поступают в зумпф (19) второй стадии измельчения. Объединенный продукт насосами перекачивается в классификатор (14) второй стадии, работающий в замкнутом цикле с мельницей (17). Установлены датчики: датчик (20) циркуляции второй стадии, датчик (15) давления на входе в классификатор (14). Пески классификатора (14) поступают в мельницу (17) второй стадии, а слив классификатора (14) является готовым продуктом измельчения. Датчик (13) плотности слива классификатора (14) второй стадии и датчик (12) крупности слива классификатора (14) второй стадии - характеристики гранулометрического состава слива классификатора (14) второй стадии. Все датчики снимают текущие показания технологических параметров (вес мельницы, расход воды). Сигналы от всех датчиков поступают в управляющую вычислительную машину (11). В схеме также установлены регуляторы 22, 25, 27, 29 и исполнительные механизмы 23, 24, 26,28.

После обработки в управляющей вычислительной машине 11 - сигналы поступают в регуляторы 22, 25, 27, 29, где сравниваются с введенными заданными значениями Qслmax и βзад, рассчитанными с помощью компьютерной программы JKSimMet. В зависимости от отклонения регулятор посылает сигнал на исполнительные механизмы действия по уменьшению или увеличению реального значения данных (веса загрузки мельницы (7) или количества воды в мельнице (7) первой стадии или количества воды в классификаторах (4), (14) первой и второй стадий, соответственно.

Способ осуществляют следующим образом. Регулятор (22) поддерживает постоянство загрузки мельницы(7) путем изменения подачи в нее руды и песков классификатора (4). Он работает от датчика веса (1) руды, датчика веса (8) мельницы (7) первой стадии и датчика веса (18) мельницы (17) второй стадии и воздействует на исполнительный орган (23) запаса материала в мельнице (7). Регулятор (25) поддерживает заданное соотношение руда - вода в мельнице (7) при измельчении путем регулирования количества подаваемой в нее воды. Он работает от датчика (5) расхода воды и воздействует на исполнительный механизм (24). Регулятор (27) регулирует плотность слива классификатора (4) путем изменения количества подаваемой в него воды. Он работает от датчика (2) плотности слива на выходе его из классификатора (4), датчика (6) расхода воды, датчика (10) циркуляции первой стадии и датчика (3) давления на входе в классификатор (4) и воздействует на исполнительный механизм (26) на линии подачи воды в классификатор (4). Регулятор (29) осуществляет перераспределение песковой нагрузки в цикле измельчения, с целью регулирования максимально допустимой величины циркуляционной нагрузки второй стадии. Это осуществляется изменением производительности по сливу Qсл и содержания расчетного класса β в сливе классификатора (14) при помощи подаваемой в него воды. Регулятор (29) работает от датчика (16) расхода воды, датчика (20) циркуляции второй стадии, датчика (15) давления на входе в классификатор (14), датчика (13) плотности слива классификатора (14) и датчика (12) крупности β слива классификатора (14) и воздействует на исполнительный механизм (28) на линии подачи воды в классификатор (14). В качестве импульса, характеризующего величину циркулирующей нагрузки, в данной системе используется вес мельниц (7) и (17) первой и второй стадий, соответственно. Установка всех регуляторов (22, 25, 27,29) задается управляющей вычислительной машиной (11).

Если произошло увеличение циркуляционной нагрузки второй стадии, то это изменение воспринимается датчиком (20) циркуляции второй стадии. Исполнительный механизм (28) уменьшает подачу воды в классификатор (14), что приводит к увеличению производительности по сливу Qсл→Qслmax и содержания расчетного класса β=βзад в сливе классификатора второй стадии (14) (т.е. гранулометрического состава слива) и увеличению его циркуляционной нагрузки за счет выдачи во вторую стадию более грубого по крупности слива. Этот процесс происходит до тех пор, пока циркуляционная нагрузка второй стадии не будет доведена до требуемого значения. При этом весовое заполнение мельницы (17) увеличивается, что немедленно отразится в показаниях датчика (18) веса мельницы (17). Увеличение веса мельницы (17) будет компенсироваться регулятором (22), который начнет уменьшать питание мельницы (7) первой стадии измельчения, пока величина запаса материала в мельнице (17) не примет прежнее заданное значение. В этом случае в стабилизирующих контурах запаса материала в мельницах (7) и (17) по истечении времени переходного процесса соотношение исходная руда/циркулирующая нагрузка изменится в направлении уменьшения доли исходного питания за счет циркулирующей нагрузки, т.е. стабилизирующий контур подачи питания будет поддерживать новое заданное значение производительности.

Экономический эффект от внедрения предлагаемого способа за счет повышения производительности двухстадиального цикла измельчения составит 5-7% в год.

Способ автоматического управления двухстадиальным замкнутым циклом мокрого измельчения, включающий регулирование первой стадии по ее оптимальной производительности и поддержанию соотношения руда - вода, а второй стадии - по заданной конечной плотности слива, регулирование плотности слива классификатора первой стадии в зависимости от величины циркуляционной нагрузки второй стадии, отличающийся тем, что регулирование плотности слива классификатора первой стадии и стабилизацию гранулометрического состава по расчетному классу крупности слива классификатора второй стадии измельчения производят в соответствии с условиями Qсл → Qсл max, β=βзад, где Qсл - производительность по сливу, Qсл max - максимальная производительность по сливу, β - содержание расчетного класса, βзад - заданное значение содержания расчетного класса.



 

Похожие патенты:

Изобретение относится к измерительному инструменту для индикации нагрузки в конусной дробилке. .

Изобретение относится к производству строительных материалов, а именно к мокрому способу производства портландцементного клинкера на стадии приготовления сырьевой смеси.

Изобретение относится к управлению планетарной мельницей. .

Изобретение относится к автоматизации процесса мокрого самоизмельчения материалов в мельничных агрегатах. .

Изобретение относится к области автоматического контроля и управления загрузкой мельниц мокрого самоизмельчения руд. .

Изобретение относится к порошковой металлургии и предназначено для получения порошка активированного алюминия, используемого в качестве энергетической добавки в различных композициях.

Изобретение относится к управлению работой измельчительного агрегата с замкнутым циклом и может быть использовано в цветной и черной металлургии, строительной и химической промышленности и других отраслях, где применяются барабанные мельницы для измельчения сырья.

Изобретение относится к области автоматизации процессов измельчения сырья и может найти применение в промышленности строительных материалов, горно-рудной и других отраслях промышленности.

Изобретение относится к средствам автоматизации процесса измельчения материалов в мельничных агрегатах и может быть использовано в металлургической, химической, цементной, алмазной, строительной и других отраслях промышленности, связанных с процессом измельчения материалов.

Изобретение относится к дробильной установке, способу и системе для управления процессом дробления. Дробильная установка содержит питатель, дробилку первой ступени для дробления подаваемого материала, дробилку второй ступени для дробления раздробленного материала и транспортер для перемещения раздробленного материала от первой дробилки ко второй дробилке. Дробильная установка содержит средства измерения для измерения объемного потока раздробленного материала и средства управления для регулирования скорости подачи материала, подвергаемого дроблению, в ответ на изменение объемного потока раздробленного материала. С помощью средств измерения в одной или нескольких точках между двумя или большим количеством ступеней дробления измеряют объемный поток материала. С помощью средств управления регулируют скорость подачи материала, подвергаемого дроблению в дробилке следующей ступени, в ответ на изменение объемного потока материала, раздробленного на предыдущих ступенях. Машиночитаемый носитель с хранящимся на нем компьютерным программным продуктом для управляющего модуля управляет процессом дробления в дробильной установке. Система управления технологическим процессом дробильной установки позволяет заменить корректирующие действия оператора при управлении процессом дробления. 4 н. и 8 з.п. ф-лы, 4 ил.

Изобретение относится к способу отделения налипшего материала от внутренней стенки измельчающего барабана шаровой барабанной мельницы и устройству для его осуществления. Способ заключается в том, что изменяют приводной момент, прилагаемый к измельчающему барабану (10), около заранее определенного и возрастающего эталонного уровня момента. Контроллер выполнен с возможностью управления приводным устройством, которое обеспечивает изменение прилагаемого им приводного момента около заранее определенного и увеличивающегося эталонного уровня. Способ и устройство обеспечивают плавное приложение момента, что позволяет предотвратить повреждения механизма трансмиссии шаровой мельницы. 2 н. и 5 з.п. ф-лы, 3 ил.

Изобретение относится к конусным дробилкам, в частности к упорному подшипнику конусной дробилки и способу поддержания ее вертикального вала. Конусная дробилка содержит дробящий конус с дробящей броней, жестко прикрепленный к верхнему участку вертикального вала 2, станину, на которой установлена вторая дробящая броня, образующая вместе с броней разгрузочную щель, упорный подшипник 24, первое пространство 40 и второе пространство 44. Ширина щели регулируется посредством изменения вертикального положения брони относительно вертикального положения брони. Упорный подшипник 24, состоящий из горизонтальных опорных дисков 26, 27, 28, расположен между вертикальным валом 2 и поршнем 30 и выполнен с возможностью передачи усилий от дробящего конуса на станину. При этом первое пространство 40 выполнено с возможностью приема изменяющегося количества жидкости под давлением и образовано поршнем 30 и корпусом 32 поршня, а второе пространство 44 выполнено с возможностью приема через канал 46 жидкости под давлением из первого пространства 40 и расположено между вертикальным валом 2 и поршнем 30. Способ поддержания вертикального вала заключается в передаче жидкости между первым пространством 40 и вторым пространством 44 в процессе работы дробилки 1. Упорный подшипник и способ поддержания вертикального вала позволяет снять нагрузку, действующую в вертикальном направлении, от дробящего конуса 12. 2 н. и 10 з.п. ф-лы, 7 ил.

Изобретение относится к области дробления материалов. Технический результат - повышение эффективности дробления. Способ управления относится к дробилке, состоящей, как минимум, из рамы (6), инструмента дробления (4) и исполнительного механизма (10) для перемещения инструмента дробления. Измеряют данные, относящиеся к значению потребляемой мощности исполнительного механизма и/или дробящего усилия, или гранулометрического состава измельченного материала, изготовленного дробилкой, или количества измельченного материала, изготовленного дробилкой. Изменение частоты цикла перемещения инструмента дробления (4) осуществляют на основе измеренных данных. 3 н. и 6 з.п. ф-лы, 9 ил.

Группа изобретений относится к системе и к способу охарактеризовывания частиц в потоке продуктов помола зерна в установке для его помола, где охарактеризовывание включает в себя охарактеризовывание частиц зерна по размеру. В системе и способе охарактеризовывания размолотого материала в размольной установке используются участок облучения для пропуска части потока размолотого материала, содержащий средство облучения частиц в части потока электромагнитным излучением, и участок регистрации для пропуска, содержащий средство регистрации электромагнитного излучения, излучаемого частицами части потока размолотого материала, пропущенной через участок облучения. Средство регистрации содержит отображающую систему и датчик цветного изображения для отображения на нем частиц посредством излученного ими электромагнитного излучения. Датчик цветного изображения содержит элементы изображения для спектрально-избирательной регистрации отображенного на них электромагнитного излучения. Участок регистрации содержит светящееся средство или выполненное и расположенное с возможностью регистрации частиц размолотого материала с помощью комбинации проходящего и падающего света. Изобретения обеспечивают повышение скорости и точности регистрации свойств потока продукта помола. 2 н. и 24 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам для измельчения сыпучих материалов и может быть использовано для измельчения зерна. Устройство содержит раму 1, вертикальный вал 19, ротор 20 с измельчающими элементами 21, деку 18, выгрузной патрубок 3, привод 22, цилиндрическую камеру 2 с установленными над ней загрузочным патрубком 4 с двумя шиберными заслонками 5 и 6 криволинейной формы, размещенными с двух взаимно противоположных сторон. Заслонки 5 и 6 установлены с возможностью частичного взаимного перекрытия, а их торцевые рабочие стороны имеют внутренние угловые равнобедренные вырезы 16 и 17 с размещением вершины углов вырезов на одной линии с вертикальной осью ротора. Устройство также дополнительно содержит блок управления 24 и соединенные с ним датчики влажности 23, частоты вращения 25 и расхода материала 26, а также исполнительные механизмы 27 и 28 регулирования подачи материала, его выдачи и привода ротора. В устройстве обеспечивается повышение эффективности измельчения. 2 з.п. ф-лы, 2 ил.

Система автоматического управления процессом измельчения замороженных в виде блоков пищевых продуктов может быть использована при измельчении резанием в автономном режиме или в составе автоматических линий в колбасном производстве, в мясном, рыбном или других. Система позволяет регулировать скорости подачи и резания с учетом температуры сырья. Система предназначена для установки, включающей измельчитель с режущим устройством и устройство подачи продукта с приводами. Система содержит датчики температуры поверхности измельчаемого блока и его центра (21, 22), датчики измерения (17, 18) мгновенных скоростей резания и подачи, управляющую вычислительную машину (1) с пультом управления и исполнительные устройства. Датчики температуры соединены через интерфейсный блок (3) с управляющей машиной. Система снабжена сумматорами (9, 10) и регуляторами (11, 12), встроенными в исполнительные устройства в виде частотных преобразователей (7, 8). Преобразователи соединены через силовые модули (15, 16) со статорными обмотками электродвигателей приводов (13, 14), а также через интерфейсные блоки (19, 20) с датчиками скоростей. Для точности регулирования датчики скоростей подключены к управляющей машине по принципу отрицательной обратной связи. Система позволяет повысить качество измельченного продукта, определяемого требуемой степенью измельчения сырья. 8 ил.

Изобретение относится к устройствам и способам автоматического подавления вибрации и может быть использовано в помольно-смесительных агрегатах с автоматической балансировкой. Устройство автоматического подавления вибрации помольно-смесительного агрегата, включающего станину 1, вертикальные колонки 2 с ползунами 3, прямоугольную раму 4 с камерами 5, соединенную с ползунами 3 и эксцентриковым валом 9, снабженным с двух сторон противовесами 10, содержит дополнительный вал 11, связанный с эксцентриковым валом 9. Дополнительный вал 11 снабжен водилом 13 с двумя направляющими 14, несущими дополнительный противовес 15, взаимодействующий с сателлитом дифференциального механизма, левая и правая шестерни которого соединены с полуосями 17, связанными с выходами двух тормозных электромагнитных муфт 19, 20. Электрические входы муфт 19, 20 соединены с выходами соответственно первого 22 и второго 23 усилителей-преобразователей, входящих в прямую цепь основного канала управления положением дополнительного противовеса 15 и соединенных своими входами через модуль ввода-вывода с первым и вторым выходом программируемого контроллера 24. Устройство содержит два дополнительных канала управления. Первый дополнительный канал с управлением по разомкнутому принципу частотой вращения эксцентрикового вала 9 соединен входом с третьим выходом контроллера 24 и состоит из последовательно соединенных третьего усилителя-преобразователя 27, третьего исполнительного механизма 28, связанного с эксцентриковым валом 9. Второй дополнительный канал управления загрузкой помольно-смесительного агрегата входом соединен с четвертым выходом контроллера 24 и содержит в прямой цепи последовательно соединенные четвертый усилитель-преобразователь 29, четвертый исполнительный механизм 30 и второй регулирующий орган 31. При этом цепь обратной связи содержит последовательно соединенные датчик массы материала 32 на выходе помольно-смесительного агрегата и второй нормирующий преобразователь 33, выход которого связан со вторым входом контроллера 24, соединенного своим первым входом с выходом цепи обратной связи основного канала управления положением дополнительного противовеса 15, включающей последовательно соединенные датчик положения дополнительного противовеса и первый нормирующий преобразователь 26. Согласно способу процесс подавления вибрации осуществляют по разомкнутому принципу посредством контроллера 24, база данных в памяти которого задает поверхность статических характеристик агрегата в виде зависимости уровня вибрации от коэффициента загрузки в камерах и положения дополнительного противовеса при различных фиксированных значениях частоты вращения эксцентрикового вала 9. Определяют текущее положение рабочей точки на поверхности статических характеристик, сравнивают с положением точки, соответствующим наименьшему значению вибрации, и формируют управляющее воздействие положительного или отрицательного знака, подаваемое после усиления на первую или вторую тормозные электромагнитные муфты, действие которых приводит к перемещению дополнительного противовеса, способствующему подавлению вибрации. Устройство и способ обеспечивают повышение качества измельченного материала и увеличение ресурса работы узлов и деталей помольно-смесительного агрегата. 2 н.п. ф-лы, 4 ил.
Наверх