Способ лазерной локации


 


Владельцы патента RU 2464590:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (RU)

Изобретение может быть использовано в системах лазерной локации для определения местонахождения материального объекта в пространстве. Способ лазерной локации включает облучение определяемого материального объекта лазерным излучением, частоту которого изменяют по пилообразному закону. Лазерное излучение разделяют на три пары составляющих и преобразуют каждую составляющую лазерного излучения из прямого в рассеянное путем пропускания через диафрагму. Все пары диафрагм располагают таким образом, что они не находятся в одной плоскости и чтобы оптические пути прохождения лазерного излучения от лазера до каждой из пары диафрагм были одинаковы. Определяемый объект, на котором расположен приемник лазерного излучения, поочередно облучают рассеянным лазерным излучением от каждой пары диафрагм. Приемник регистрирует суммарный сигнал лазерного излучения от каждой пары диафрагм и преобразуют его в электрический сигнал. Производят обработку и анализ электрического сигнала, возникающего при воздействии рассеянного лазерного излучения поочередно от каждой пары диафрагм, не находящихся в одной плоскости. По результатам анализа и обработки сигналов от каждой пары диафрагм определяют варианты всех возможных расположений материального объекта в пространстве, представляющие собой поверхность гиперболоида. По точке пересечения трех гиперболических поверхностей и определяют действительное местоположение материального объекта в пространстве. Технический результат заключается в повышении точности определения местоположения объекта. 1 ил.

 

Изобретение относится к области приборостроения, преимущественно к измерительной технике, основанной на лазерном излучении, и может быть использовано в робототехнике и на предприятиях, занимающихся разработкой, изготовлением и применением систем лазерной локации для определения местонахождения материального объекта в пространстве.

Из уровня техники известен способ лазерной локации, при котором облучают определяемый материальный объект лазерным излучением, принимают лазерное излучение приемником, преобразуют лазерное излучение в электрический сигнал, производят обработку и анализ электрического сигнала и по результатам анализа этого сигнала определяют координаты каждой точки поверхности контролируемого материального объекта (заявка на изобретение №2001117241, G01B 11/24, 2003 г.).

В данном способе лазер устанавливается на поворотной платформе, а лазерное излучение направляется на материальный объект под разными углами, при этом для определения координат каждой точки поверхности контролируемого материального объекта необходимо измерять углы поворотной платформы, на которой устанавливают лазер. Погрешность измерения этих углов сильно влияет на точность определения координат каждой точки поверхности контролируемого материального объекта. Недостаток данного способа заключается в невысокой точности определения местоположения материального объекта, обусловленной сложностью точного определения углов установки платформы с лазером.

Наиболее близким решением по технической сути к заявленному способу является способ лазерной локации, включающий облучение определяемого материального объекта лазерным излучением, принятие лазерного излучения приемником, преобразование лазерного излучения в электрический сигнал, обработку и анализ электрического сигнала, по результатам которого определяют местоположение материального объекта (Патент Российской Федерации №2296350, G01S 17/02, 2007 г.). В указанном способе материальный объект облучают немодулированным лазерным излучением, излучение отражается материальным объектом и водной поверхностью, над которой расположен материальный объект, принимается приемником, расположенным вблизи источника лазерного излучения, преобразуется в электрический сигнал, по результатам обработки которого судят о координатах материального объекта относительно водной поверхности. Недостатком известного способа является невысокая точность определения местоположения материального объекта на плоскости, обусловленная тем, что принимают излучения не только от материального объекта, но и от бликов морской поверхности и статистически усредняют полученные результаты. Кроме того, недостатком данного способа является невозможность применения его в робототехнике.

В предложенном изобретении ставится техническая задача создания такого способа лазерной локации, который бы обеспечивал высокую точность определения местоположения материального объекта в пространстве, что особенно важно для робототехники.

Поставленный технический результат достигается тем, что в способе лазерной локации, включающем облучение определяемого материального объекта лазерным излучением, принятие лазерного излучения приемником, преобразование лазерного излучения в электрический сигнал, обработку и анализ электрического сигнала, по результатам которого определяют местоположение материального объекта, согласно изобретению при облучении материального объекта лазерным излучением изменяют частоту лазерного излучения по пилообразному закону, разделяют лазерное излучение на три пары составляющих с помощью полупрозрачных зеркал или призм или оптоволокна, преобразуют каждую составляющую лазерного излучения из прямого в рассеянное путем пропускания через диафрагму, при этом диафрагмы располагают парами в разных плоскостях таким образом, что оптические пути прохождения лазерного излучения от лазера до каждой из пары диафрагм были одинаковы, затем облучают материальный определяемый объект рассеянным лазерным излучением от каждой пары диафрагм поочередно, располагают приемник лазерного излучения на определяемом материальном объекте, принимают приемником суммарный сигнал рассеянного лазерного излучения от каждой пары диафрагм и преобразуют его в электрический сигнал, производят обработку и анализ электрического сигнала, возникающего при воздействии рассеянного лазерного излучения поочередно от каждой пары диафрагм, расположенных в разных плоскостях, после чего по результатам анализа и обработки сигналов от каждой пары диафрагм определяют варианты всех возможных расположений материального объекта в пространстве, представляющие собой поверхность гиперболоида, по точке пересечения трех гиперболических поверхностей и с последующим определением настоящего местоположения объекта в пространстве.

Предлагаемый способ лазерной локации поясняется с помощью прилагаемого чертежа, где на фиг.1 схематично изображено расположение лазера, диафрагм и определяемого объекта.

Сущность предлагаемого изобретения заключается в следующем.

В лазере 1 (фиг.1) излучение модулируется по пилообразному закону. Базовая частота излучения может быть выбрана в инфракрасном диапазоне, например, 200 ТГц, что соответствует длине волны примерно 1,5 мкм. При этом мы линейно наращиваем частоту на 100 ГГц за 1 мс.

Лазерное излучение разделяют на три пары составляющих, например, с помощью полупрозрачных зеркал или призм или оптоволокна и направляют на диафрагмы 2, при этом оптические пути прохождения лазерного излучения от лазера до каждой из пары диафрагм выполняются одинаковыми.

Преобразуют каждую составляющую лазерного излучения из прямого в рассеянное путем пропускания через диафрагмы 2. При этом располагают все три пары диафрагм так, чтобы они не лежали в одной плоскости, например в трех взаимно перпендикулярных плоскостях, как на фиг.1. Три пары диафрагм могут быть образованы как шестью диафрагмами, так и меньшим количеством, например пятью или четырьмя, если одна или более из диафрагм будет являться общей для разных пар.

Приемник рассеянно лазерного излучения располагают на определяемом материальном объекте 3. Производят облучение определяемого материального объекта рассеянным лазерным излучением от каждой пары диафрагм поочередно, поскольку излучение от одной пары диафрагм при данном способе локации не дает однозначного решения. При этом частота переключения рассеянного лазерного излучения от каждой пары диафрагм выбирается из условий обеспечения необходимой точности определения местоположения материального объекта. Например, при указанных выше параметрах модуляции лазерного излучения частота переключения между парами источников должна составлять порядка секунд.

С помощью установленного на материальном объекте приемника поочередно принимают суммарные сигналы рассеянного лазерного излучения от каждой пары диафрагм, которые преобразуют в электрические сигналы, например, с помощью фотоэлектрического преобразователя. Производят обработку и анализ электрического сигнала, возникающего при воздействии рассеянного лазерного излучения поочередно от каждой пары диафрагм.

В результате анализа обработанного сигнала через определение разности частот от каждой диафрагмы в паре находится разность расстояний от определяемого материального объекта до диафрагм, координаты которых известны. По разности расстояний от определяемого материального объекта до диафрагм можно определить некую поверхность всех возможных расположений материального объекта в пространстве. Так как геометрическое место точек М Евклидового пространства, для которых абсолютное значение разности расстояний от М до двух выделенных точек F1 и F2 (называемых фокусами, в нашем случае это как раз и есть диафрагмы) постоянно - это гиперболоид вращения, то указанная поверхность имеет вид гиперболоида вращения, на поверхности которого и находится определяемый материальный объект, при облучении его рассеянным лазерным излучением от одной пары диафрагм. Путем облучения определяемого материального объекта рассеянным лазерным излучением от второй пары диафрагм можно определить вторую поверхность, также имеющую вид гиперболоида вращения, на которой находится определяемый объект. Пересечение двух поверхностей задает нам некую кривую в пространстве. Облучение определяемого материального объекта рассеянным лазерным излучением от третьей пары диафрагм позволяет уже с помощью пересечения третьего гиперболоида вращения и найденной кривой найти координаты (Х0, Y0, Z0) или действительное местоположение определяемого материального объекта в пространстве.

Заявленный способ лазерной локации может быть осуществлен в промышленности с применением освоенных современных технологий, материалов и процессов и может быть использован для определения местоположения материальных объектов в робототехнике, станкостроении и машиностроении.

Предложенный способ лазерной локации не использует измерения углов, что приводит к увеличению погрешности определения местоположения определяемого материального объекта с увеличением расстояния от лазерного источника, позволяет повысить точность определения местоположения материального объекта на плоскости, которая не зависит в данном способе от расстояния между материальным объектом и источником лазерного излучения.

Способ лазерной локации, включающий облучение определяемого материального объекта лазерным излучением, принятие лазерного излучения приемником, преобразование лазерного излучения в электрический сигнал, обработку и анализ электрического сигнала, по результатам которого определяют местоположение материального объекта, отличающийся тем, что при облучении материального объекта лазерным излучением изменяют частоту лазерного излучения по пилообразному закону, разделяют лазерное излучение на три пары составляющих с помощью полупрозрачных зеркал, или призм, или оптоволокна, преобразуют каждую составляющую лазерного излучения из прямого в рассеянное путем пропускания через диафрагму, при этом диафрагмы располагают парами в разных плоскостях таким образом, что оптические пути прохождения лазерного излучения от лазера до каждой из пары диафрагм были одинаковы, затем облучают материальный определяемый объект рассеянным лазерным излучением от каждой пары диафрагм поочередно, располагают приемник лазерного излучения на определяемом материальном объекте, принимают приемником суммарный сигнал рассеянного лазерного излучения от каждой пары диафрагм и преобразуют его в электрический сигнал, производят обработку и анализ электрического сигнала, возникающего при воздействии рассеянного лазерного излучения поочередно от каждой пары диафрагм, расположенных в разных плоскостях, после чего по результатам анализа и обработки сигналов от каждой пары диафрагм определяют варианты всех возможных расположений материального объекта в пространстве, представляющие собой поверхность гиперболоида, по точке пересечения трех гиперболических поверхностей и с последующим определением настоящего местоположения объекта в пространстве.



 

Похожие патенты:

Дальномер // 2450286
Изобретение относится к ручному дальномеру для бесконтактного измерения расстояний. .

Изобретение относится к устройствам для съемки пространства предметов с оптоэлектронным дальномером, работающим по принципу регистрации времени пробега сигнала. .

Изобретение относится к оптико-электронной технике и может быть использовано для обеспечения информационной безопасности служебных помещений, офисов фирм, банковских учреждений и т.п.

Изобретение относится к области приборостроения, преимущественно к измерительной технике, основанной на лазерном излучении, и может быть использовано в робототехнике и на предприятиях, занимающихся разработкой, изготовлением и применением систем лазерной локации для определения местонахождения объекта на плоскости.

Изобретение относится к системам определения наличия и местоположения посторонних объектов в охраняемых зонах, например на железных дорогах, в частности к локационным системам обнаружения и определения местоположения посторонних объектов в охраняемой зоне.

Изобретение относится к технике сопровождения цели по направлению и дистанционной оценки параметров вибраций объектов по пространственным колебаниям отраженного от них оптического луча.

Изобретение относится к области оптико-электронных измерений и может быть использовано в лазерных локационных системах, системах точного нацеливания узких лазерных лучей, в частности системах точного определения направления на источники лазерного излучения или оптико-электронный прибор.

Изобретение относится к способам обнаружения объекта с построением кадра изображения при разработке систем автоматического анализа и классификации изображений. .

Изобретение относится к области оптико-электронного приборостроения и может быть использовано в автоматических оптико-электронных приборах, которые построены на основе матричных фотоприемников и выполняют измерение угловых координат точечных целей в условиях воздействия фоновых помех повышенного уровня.

Изобретение относится к области метрологии, в частности к способам измерения расстояний и формы объектов, и может использоваться в различных отраслях промышленности.

Изобретение относится к приборостроению, предназначено для формирования информационного поля лазерных систем телеориентации. .

Изобретение относится к области определения взаимного положения объектов, один из которых служит источником электромагнитного излучения в оптическом диапазоне, а второй - его измерителем и может использоваться для создания оптических дальномеров, пеленгаторов, теодолитов, телескопов и другой оптической аппаратуры аналогичного назначения

Изобретение относится к области обнаружения в пространстве и определения местоположения объектов в воздушной среде и воде при помощи визуально-оптического контроля лазерного сканирования, которое осуществляется с помощью активного телеметрического наблюдения за траекторией распространения лазерного луча

Использование: относится к области визуализации распределения в пространстве электрических полей СВЧ диапазона. Сущность: в установке визуализации СВЧ полей применены измерительная камера «открытого» типа из двух расположенных горизонтально параллельных медных дисков, антенна-зонд, перемещающаяся при помощи двух шаговых двигателей, управляемых компьютерной программой, как по дуге окружности, так и по ее радиусу, опорный канал, включенный параллельно измерительному при помощи двух делителей мощности СВЧ. Технический результат: обеспечивается возможность получения картины величины СВЧ поля в полярных координатах, а также значительно увеличивается чувствительность и помехозащищенность измерительного процесса. 2 ил.

Изобретение относится к области оптической электроники и может быть использовано в прецизионных системах обеспечения вхождения в связь, в системах точного нацеливания узких оптических лучей, системах траекторных измерений, а также в системах обеспечения устойчивости оптического канала передачи информации, размещенных на подвижных средствах. Достигаемый технический результат - получение возможности определения угловых координат источника оптического излучения подвижными пеленгационными средствами. Сущность способа определения направления на источник оптического излучения подвижными средствами заключается в следующем. Два оптико-электронных координатора (ОЭК) устанавливают на подвижные носители (автомобили, бронемашины и др.). При этом положение ОЭК стабилизируют в вертикальной и горизонтальной плоскостях с целью удержания ортогональной ориентации приемных полей ОЭК в системе координат. С помощью навигационной системы определяют текущие координаты местоположения ОЭК и относительно них координаты фотоэлементов матричных приемников. Принимают рассеянное аэрозольным образованием оптическое излучение источника и вычисляют его угловые координаты по текущим координатам фотоэлементов, имеющих максимальное значение выходных сигналов. 2 ил.
Наверх