Устройство для визуализации электрических полей свч в пространстве



Устройство для визуализации электрических полей свч в пространстве
Устройство для визуализации электрических полей свч в пространстве

 


Владельцы патента RU 2504801:

Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) (RU)

Использование: относится к области визуализации распределения в пространстве электрических полей СВЧ диапазона. Сущность: в установке визуализации СВЧ полей применены измерительная камера «открытого» типа из двух расположенных горизонтально параллельных медных дисков, антенна-зонд, перемещающаяся при помощи двух шаговых двигателей, управляемых компьютерной программой, как по дуге окружности, так и по ее радиусу, опорный канал, включенный параллельно измерительному при помощи двух делителей мощности СВЧ. Технический результат: обеспечивается возможность получения картины величины СВЧ поля в полярных координатах, а также значительно увеличивается чувствительность и помехозащищенность измерительного процесса. 2 ил.

 

Изобретение относится к области визуализации распределения в пространстве электрических полей СВЧ диапазона, что может быть использовано при разработке антенн и прочих устройств, взаимодействующих в пространстве с электрическими полями высокой частоты.

Известны работы в зарубежной научной литературе, в которых описывается получение картин пространственного распределения электрического поля СВЧ вокруг различных изучаемых изделий при помощи системы из двух плоских параллельно расположенных металлических листов, в зазоре между которыми располагаются устройство для подачи СВЧ мощности, перемещаемая зондирующая антенна и исследуемое изделие-образец [1]-[3].

При формировании картин СВЧ поля авторы используют перемещающуюся в пространстве антенну-зонд, сигнал с которой направляется на векторный анализатор цепей (ВАЦ), фиксирующий амплитуду и фазу СВЧ сигнала в каждой точке пространства, где производятся измерения. Далее при помощи компьютерной программы эти результаты преобразуются в цветное изображение (в условных цветах), где каждый цвет соответствует величине напряженности электрического поля СВЧ в данной точке картины поля.

При этом авторы [«Metamaterial Electromagnetic Cloak at Microwave Frequencies», D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science, V.314, 2006, p.977-980.] используют алюминиевые листы и куски материала-поглотителя СВЧ для формирования измерительной камеры - «пластинчатого волновода» («parallel plate waveguide»), в котором размещается исследуемый объект и производятся измерения, а также конец коаксиального кабеля, вставленный в сквозное отверстие в верхнем алюминиевом листе и образующий поверхностью среза одно целое с внутренней (нижней) поверхностью верхнего алюминиевого листа, в качестве измерительной антенны-зонда.

Перемещение зондирующей антенны производится при помощи «X-Y - робота», как его называют авторы публикаций [«Focusing by planoconcave lens using negative refraction», P. Vodo, P.V. Parimi, W.T. Lu, S. Sridhar, Applied Physics Letters, V.86, 201108, 2005, 3 р.] и [«Negative Refraction and Left-Handed Electro-magnetism in Microwave Photonic Crystals», P.V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, S.Sridhar, Physical Review Letters, V.92, N.12, 2004, p.127401-1-127401-4.]. Такой «робот» позволяет перемещать антенну-зонд в двух взаимно перпендикулярных направлениях по задаваемой ему перед началом измерительного процесса программе. Однако, нигде в статьях не раскрываются подробности устройства и принцип действия такого «робота».

В одной из работ [«Microwave photonic crystal with tailor-made negative refractive index», P. Vodo, P.V. Parimi, W.T. Lu, S. Sridhar, R. Wing, Applied Physics Letters, V.85, N.10, 2004, p.1858-1860.] антенна-зонд перемещается по дуге окружности, подобно гониометру, снимая значения амплитуды и фазы СВЧ сигнала лишь в зависимости от угла, при постоянном значении радиуса такой дуги, что не дает возможности получать картины пространственного распределения СВЧ поля. Также в этой работе в качестве измерительной камеры используется безэховая камера больших размеров (5х8х4 метров).

Технический результат, на достижение которого направлено заявляемое изобретение, состоит в создании устройства для получения в условных цветах картин пространственного распределения напряженности электрического поля СВЧ вокруг исследуемого изделия в полярных координатах, с задаваемым перед началом измерительного процесса шагом.

Для достижения указанного технического результата устройство для визуализации электрических полей СВЧ в пространстве содержит измерительную камеру «открытого» типа из двух расположенных горизонтально параллельных медных дисков, плоский прямоугольный латунный рупор, антенну-зонд из тонкого полужесткого коаксиального кабеля, с выступающим на конце центральным проводником, загнутым вверх под прямым углом, и перемещающуюся при помощи двух шаговых двигателей, управляемых компьютерной программой, как по дуге окружности, так и по ее радиусу, опорный канал, включенный параллельно измерительному при помощи двух делителей СВЧ мощности, а также векторный анализатор цепей (ВАЦ), соединенный с компьютером, на экране которого формируется цветное изображение электрической составляющей СВЧ электромагнитного поля в пространстве вокруг исследуемого образца.

Таким образом, данное измерительное устройство позволяет видеть на экране компьютера пространственную картину величины СВЧ поля в окружающем исследуемое изделие пространстве, отображаемую в условных цветах с некоторым заданным шагом, величину которого можно изменять при каждом измерении в некотором интервале.

Характерными признаками предлагаемого устройства для визуализации СВЧ электрических полей в пространстве являются измерительная камера «открытого» типа, изготовленная из двух плоскопараллельных медных дисков, расположенных горизонтально, и плоский прямоугольный латунный рупор для подачи СВЧ мощности в измерительную камеру, а также применение чувствительной измерительной аппаратуры (ВАЦ), что позволяет использовать малые мощности СВЧ сигнала для получения картин поля вокруг исследуемых изделий и дает возможность изготовить измерительную камеру «открытой» (без применения поглощающего СВЧ материала) без всякого вреда, как для измерительного процесса (нет отражения от стен помещения и окружающих предметов), так и для здоровья обслуживающего персонала (нет опасности вредного для здоровья облучения). Важными отличительными признаками предлагаемой установки для визуализации СВЧ электрических полей в пространстве является также применение опорного канала, включенного параллельно измерительному в СВЧ цепь установки при помощи двух делителей СВЧ мощности, что обеспечивает более высокую чувствительность и помехоустойчивость измерительного процесса и то, что картина СВЧ поля рисуется не в Декартовых (X, Y), а в полярных (ρ, φ) координатах.

Предлагаемое устройство для визуализации электрических полей СВЧ в пространстве позволяет видеть на экране компьютера картину пространственного распределения напряженности электрического поля СВЧ вокруг исследуемого изделия, отображаемую в условных цветах в полярных координатах с некоторым заданным шагом, величину которого можно изменять при каждом измерении в некотором интервале.

Предлагаемое устройство для визуализации СВЧ электрических полей иллюстрируется рисунками, представленными на фиг.1-2.

На фиг.1 показана схема устройства.

1 - два параллельных медных диска; 2 - подводящий СВЧ волновод; 3 - излучающий рупор; 4 - антенна-зонд; 5 - плита-основание; 6 - штатив; 7 - стойка-ось; 8 - шаговый двигатель кругового перемещения антенны-зонда; 9 - диск с зубчатой передачей; 10 - система радиального перемещения антенны-зонда; 11 - шаговый двигатель радиального перемещения; 12 - противовес; 13 - держатель верхнего диска; 14 - червячная пара для ручного вертикального перемещения верхнего диска; 15 - ручка для ручного вертикального перемещения верхнего диска.

На фиг.2 показана схема СВЧ цепи устройства визуализации СВЧ полей.

Работа установки для визуализации СВЧ электрических полей осуществляется следующим образом. Мощность СВЧ с встроенного в Векторный Анализатор Цепей Р4М-18 СВЧ генератора поступает по коаксиальному кабелю на делитель мощности, где сигнал делится на два: опорный и измерительный. Измерительный сигнал поступает по коаксиальному кабелю на коаксиально-волноводный переход и далее - по отрезку прямоугольного волновода на плоский излучающий латунный рупор. Из латунного рупора СВЧ мощность поступает в измерительную камеру - пространство между двумя плоскими параллельными медными дисками, расположенными горизонтально. В центре измерительной камеры, на нижнем диске располагается исследуемый образец. Антенна-зонд, анализирующая величину поля СВЧ в пространстве вокруг исследуемого образца, изготовленная из тонкого полужесткого коаксиального кабеля, с выступающим на конце центральным проводником, загнутым вверх под прямым углом, сканирует пространство измерительной камеры вокруг исследуемого образца. Это достигается перемещением антенны с помощью двух шаговых двигателей, управляемых компьютером, как по дуге окружности, так и в радиальном направлении, что и позволяет производить измерения СВЧ поля в измерительной камере вокруг исследуемого изделия в полярных координатах с заданным шагом. Снятые антенной-зондом значения СВЧ поля поступают по коаксиальному кабелю на второй делитель мощности, где суммируются и интерферируют с сигналом опорного канала. Далее суммарный сигнал передается на Векторный Анализатор Цепей Р4М-18 (ВАЦ), соединенный с компьютером, на экране которого, с помощью специальной обрабатывающей программы (также созданной нами на языке «Visual Basic 6.0») формируется цветное изображение электрической составляющей СВЧ электромагнитного поля в пространстве вокруг исследуемого образца. Цвет этого изображения определенным образом соответствует величине поля СВЧ.

Устройство для визуализации электрических полей СВЧ в пространстве, характеризующееся тем, что содержит измерительную камеру «открытого» типа из двух расположенных горизонтально параллельных медных дисков, плоский прямоугольный латунный рупор, антенну-зонд из тонкого полужесткого коаксиального кабеля с выступающим на конце центральным проводником, загнутым вверх под прямым углом, и перемещающуюся при помощи двух шаговых двигателей, управляемых компьютерной программой, как по дуге окружности, так и по ее радиусу, опорный канал, включенный параллельно измерительному при помощи двух делителей СВЧ мощности, а также векторный анализатор цепей (ВАЦ), соединенный с компьютером, на экране которого формируется цветное изображение электрической составляющей СВЧ электромагнитного поля в пространстве вокруг исследуемого образца.



 

Похожие патенты:

Изобретение относится к области обнаружения в пространстве и определения местоположения объектов в воздушной среде и воде при помощи визуально-оптического контроля лазерного сканирования, которое осуществляется с помощью активного телеметрического наблюдения за траекторией распространения лазерного луча.

Изобретение относится к области определения взаимного положения объектов, один из которых служит источником электромагнитного излучения в оптическом диапазоне, а второй - его измерителем и может использоваться для создания оптических дальномеров, пеленгаторов, теодолитов, телескопов и другой оптической аппаратуры аналогичного назначения.

Изобретение относится к области приборостроения, преимущественно к измерительной технике, основанной на лазерном излучении, и может быть использовано в робототехнике и на предприятиях, занимающихся разработкой, изготовлением и применением систем лазерной локации для определения местонахождения материального объекта в пространстве.

Изобретение относится к оптико-электронной технике и может быть использовано для обеспечения информационной безопасности служебных помещений, офисов фирм, банковских учреждений и т.п.

Изобретение относится к области приборостроения, преимущественно к измерительной технике, основанной на лазерном излучении, и может быть использовано в робототехнике и на предприятиях, занимающихся разработкой, изготовлением и применением систем лазерной локации для определения местонахождения объекта на плоскости.

Изобретение относится к системам определения наличия и местоположения посторонних объектов в охраняемых зонах, например на железных дорогах, в частности к локационным системам обнаружения и определения местоположения посторонних объектов в охраняемой зоне.

Изобретение относится к технике сопровождения цели по направлению и дистанционной оценки параметров вибраций объектов по пространственным колебаниям отраженного от них оптического луча.

Изобретение относится к области оптико-электронных измерений и может быть использовано в лазерных локационных системах, системах точного нацеливания узких лазерных лучей, в частности системах точного определения направления на источники лазерного излучения или оптико-электронный прибор.

Изобретение относится к способам обнаружения объекта с построением кадра изображения при разработке систем автоматического анализа и классификации изображений. .

Изобретение относится к области оптической электроники и может быть использовано в прецизионных системах обеспечения вхождения в связь, в системах точного нацеливания узких оптических лучей, системах траекторных измерений, а также в системах обеспечения устойчивости оптического канала передачи информации, размещенных на подвижных средствах. Достигаемый технический результат - получение возможности определения угловых координат источника оптического излучения подвижными пеленгационными средствами. Сущность способа определения направления на источник оптического излучения подвижными средствами заключается в следующем. Два оптико-электронных координатора (ОЭК) устанавливают на подвижные носители (автомобили, бронемашины и др.). При этом положение ОЭК стабилизируют в вертикальной и горизонтальной плоскостях с целью удержания ортогональной ориентации приемных полей ОЭК в системе координат. С помощью навигационной системы определяют текущие координаты местоположения ОЭК и относительно них координаты фотоэлементов матричных приемников. Принимают рассеянное аэрозольным образованием оптическое излучение источника и вычисляют его угловые координаты по текущим координатам фотоэлементов, имеющих максимальное значение выходных сигналов. 2 ил.

Изобретение относится к области лазерной локации и может быть использовано в системах обнаружения оптических и оптико-электронных (ОЭ) средств наблюдения в естественных условиях и их идентификации. Перед зондированием осуществляют прием сигналов естественного фонового излучения, в котором измеряют спектральное распределение излучения и определяют в нем соотношение между интенсивностями спектральных компонент на трех выбранных длинах волн. Генерируют пучки лазерного излучения на этих длинах волн с соотношением интенсивностей пучков, соответствующим соотношению интенсивностей спектральных компонент в принятом фоновом излучении. Формируют суммарный пучок лазерного излучения и осуществляют зондирование и прием отраженного лазерного излучения на трех длинах волн и в широкой спектральной полосе. Измеряют уровни принятых оптических сигналов и определяют величины показателей световозвращения для трех длин волн и для широкой полосы длин волн. По указанным величинам формируют спектральный портрет показателя световозвращения, по которому осуществляют обнаружение и распознавание оптических и ОЭ средств наблюдения. Технический результат - повышение вероятности обнаружения и распознавания оптических и ОЭ приборов и средств наблюдения и определение их принадлежности к известным классам ОЭ приборов. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к области оптической локации и касается системы импульсной лазерной локации. Система содержит импульсный лазер, два однокоординатных сканирующих устройства, акустооптический дефлектор, выходную оптическую систему, вычислительное устройство, блок управления акустооптическим дефлектором, призменный светоделитель, измерительный канал, массив фотоприемных устройств, объектив массива фотоприемных устройств и волоконно-оптические жгуты. Волоконно-оптические жгуты с одной стороны смонтированы вместе и обращены торцами к фотоприемным устройствам, а с другой стороны волокна каждого жгута смонтированы в однорядные линейки, которые суммарно образуют однорядную линейку из волокон, торцы которой расположены в фокальной плоскости объектива фотоприемного устройства. Призменный светоделитель размещен между выходом акустооптического дефлектора и входом выходной оптической системы. Оптический вход измерительного канала соединен с выходом призменного светоделителя, а выход соединен с входом компенсации угловых ошибок вычислительного устройства. Технический результат заключается в уменьшении габаритно-весовых характеристик, повышении надежности и информативности лазерного локатора. 3 ил.

Изобретение относится к лазерной локации и может быть использовано для обнаружения оптических и оптоэлектронных приборов наблюдения, расположенных и замаскированных на местности, а также для обнаружения различных объектов, например, транспортных средств, предметов вооружения, специальной аппаратуры. Система обнаружения содержит лазерные генераторы на нескольких длинах волн генерации, дефлекторы лазерного излучения, динамические спектральные фильтры, фотоприемные блоки, приемо-передатчик СВЧ-диапазона, блок эталонных отражателей и приемники сигналов спутниковой глобальной навигационной системы. Технический результат - повышение эффективности обнаружения и вероятности правильного обнаружения и распознавания оптических и оптоэлектронных приборов и средств наблюдения при отсутствии бликов отраженных сигналов, повышение точности определения координат обнаруженных объектов и привязки их координат к глобальной навигационной системе координат. 5 з.п. ф-лы, 3 ил.

Изобретение относится к лазерной локации и может быть использовано для обнаружения оптических и оптоэлектронных приборов наблюдения, транспортных средств, предметов вооружения, специальной аппаратуры. Комплекс лазерной локации содержит две лазерные локационные системы, расположенные на базовом расстоянии одна от другой, каждая из которых содержит лазерные генераторы на двух длинах волн, фотоприемные блоки, сканер лазерного излучения, дефлекторы лазерного излучения, блоки динамической спектральной фильтрации, блок обработки локационных сигналов, блок управления лазерной локационной системой, приемник сигналов спутниковой глобальной навигационной системы. Технический результат - повышение эффективности обнаружения и вероятности распознавания оптических и оптоэлектронных приборов и средств наблюдения при отсутствии бликов отраженных сигналов, повышение точности определения координат обнаруженных объектов и привязки их координат к глобальной навигационной системе координат. 5 з.п. ф-лы, 6 ил.

Изобретение относится к оптическому приборостроению. Способ определения местоположения или обнаружения объекта, с использованием активно-импульсного прибора, включающего в себя приемный электронно-оптический преобразователь (ЭОП) и лазерный излучатель, генерирующий короткие импульсы подсветки объекта, отражения которых от объекта затем суммируют в кадре ЭОП, в котором после каждой генерации короткого импульса подсветки объекта с заданной длительностью τ осуществляют периодическое включение ЭОП на время π через заданное время задержки t3 с частотой fг=1/(π+τ) в течение заданного времени θ, причем число включений ЭОП на один импульс подсветки объекта выбирают не более величины Kmax=(t3Kmax-t3)/(τ+π), где t3Kmax=(1/f-π) - максимальное время задержки включения ЭОП для лазерного излучателя, генерирующего короткие импульсы подсветки объекта с частотой f, t3 - время задержки включения ЭОП до момента начала периода времени θ. Технический результат заключается в обеспечении возможности получения четкости и яркости изображения с увеличенной глубиной сцены. 3 ил.

Изобретение относится к оптико-электронным следящим системам, предназначенным для поиска и обнаружения малоразмерных слабоизлучающих подвижных целей, и может быть использовано в автоматических оптико-электронных приборах (ОЭП) с цифровой обработкой изображений, обеспечивающих селекцию целей в критических фоновых условиях. В соответствии с предложенным способом производят непрерывное строчно-кадровое сканирование поля обзора и проецирование объективом ОЭП изображения участка пространства на чувствительный слой МФПУ. Спроецированное изображение преобразуют в матрицу значений электрических сигналов и формируют по ним сигналы цели и фона. Обнаружение цели производят на основе пороговой обработки сигнала. Технический результат - снижение вероятности ошибочных решений при высокоинтенсивных помехах фона. 10 ил.

Изобретение относится к оптико-электронному приборостроению и может использоваться в обзорно поисковых оптико-электронных системах лазерной локации. Устройство содержит канал подсветки с лазерным излучателем и приемный канал с фотоприемным устройством с объективом, и устройство наблюдения для отображения лоцируемого пространства. Оптический элемент лазерного излучателя канала подсветки выполнен в виде сферического объектива. Фотоприемное устройство выполнено в виде ПЗС матрицы и установлено в фокальной плоскости приемного канала. Фотоприемное устройство дополнено устройством оптического деления полей изображения на два, с поляризацией полей во взаимно перпендикулярных направлениях. В устройство дополнительно введено дальномерное устройство, монитор и электронный блок управления, содержащий блок навигации, модуль оперативной памяти и обмена информацией. Технический результат - обеспечение скрытности наблюдения; определение координат объекта в широком угловом мгновенном поле зрения; автоматический режим работы. 1 ил.

Изобретение относится к области обнаружения в пространстве объектов, к способам и устройствам лазерной локации и может быть использовано в системах обнаружения и распознавания целей, в системах предупреждения столкновения транспортных средств, в навигационных устройствах и в системах охранной сигнализации. Способ основан на подсветке сектора пространства зондирующим импульсным лазерным излучением не менее одного раза за период наблюдения. Производят подавление помехи обратного рассеяния и регистрацию отраженного от поверхности объекта излучения в приемном канале. Оптический сигнал преобразуют в электрический и сравнивают с пороговым уровнем. В момент пересечения порогового уровня снизу вверх с положительной производной принимают решение о нахождении объекта в подсвечиваемом секторе пространства. При этом зондирующий импульс формируют только в момент пересечения сигналом порогового уровня сверху вниз с отрицательной производной. Технический результат - уменьшение требуемой энергии излучения источника и габаритно-весовых характеристик устройства. 2 н. и 5 з.п. ф-лы, 8 ил.
Способ относится к оптическим стереоскопическим способам определения местонахождения объекта в окружающем пространстве. При реализации способа принимают и регистрируют опорное и сравниваемое изображения двумя идентичными оптическими системами. Формируют разностные изображения путём вычитания сравниваемого изображение из опорного и опорного из сравниваемого. Обнуляют отрицательные значения в разностных изображениях. И определяют расстояние до объекта на основании сдвига между ненулевыми фрагментами разностных изображений. Причём расстояние между точками регистрации каждой пары опорного и сравниваемого изображений последовательно уменьшают при приближении объектов к оптической системе. Технический результат заключается в согласовании базисного расстояния регистрации кадров стереопары в процессе перемещения оптических систем в пространстве. 3 з.п. ф-лы, 8 ил.
Наверх