Электромагнитный вибратор крутильных колебаний

Изобретение относится к области вибрационной техники и может быть применено, например, в машиностроении для снятия остаточных механических напряжений, для вибровоздействия на среды и т.д. Сущность изобретения заключается в том, что вибратор содержит первый и второй соосные многополюсные магнитопроводы с зазором между их полюсами. На полюсах первого магнитопровода помещены катушки обмотки возбуждения, присоединенные к источнику регулируемого постоянного напряжения. Второй магнитопровод выполнен с возможностью его вращения приводным двигателем. В зазоре между магнитопроводами с полюсами помещен с возможностью углового колебательного движения цилиндрический якорь, на котором закреплены магнитопроводы якоря. Якорь прикрепляется к вибрируемому объекту. Технический результат - обеспечение возможности оперативного и независимого управления частотой крутильных колебаний с помощью изменения скорости вращения приводного двигателя, а их величины - изменением тока в катушках обмотки возбуждения. 5 ил.

 

Изобретение относится к области вибрационной техники, в частности к вибраторам крутильных колебаний, и может быть применено в машиностроении для снятия остаточных механических напряжений в длинных валах, для вибровоздействия на жидкие и сыпучие среды и т.д.

Известно устройство для создания крутильного момента на вращающееся изделие, содержащее неподвижный магнитопровод с обмоткой возбуждения, в зазоре между полюсами которого помещен соединенный с деталью зубчатый диск из электропроводного материала. При вращении диска его зубцы поочередно попадают в зазор между полюсами магнитопровода, при этом в теле зубцов наводится вихревой ток, и на зубец, диск и деталь, действует знакопеременная сила, создающая крутильный момент. Частота момента пропорциональна частоте вращения детали с диском и числу зубцов на диске [1].

Недостатки этого решения, ограничивающие область его применения и снижающие технические характеристики, состоят в значительных потерях в диске, вызванных вихревыми токами в его зубцах, и в невозможности управления частотой крутильного момента без изменения скорости вращения детали.

Известен принятый за прототип резонансный двигатель крутильных колебаний [2].

Он содержит многополюсный магнитопровод статора с помещенными на его полюсах катушками обмотки возбуждения, источник переменного напряжения для возбуждения магнитного поля в полюсах, многополюсный магнитопровод ротора с постоянными магнитами на его полюсах и упругий элемент, установленный между ротором и статором. На полюсах ротора установлены полюсные наконечники из ферромагнитного материала. При питании катушек обмотки возбуждения переменным током полюсами статора и полюсами ротора создается сила, определяющая крутильный момент, передаваемый ротором на вибрируемый объект - нагрузку. Величина крутильного момента может регулироваться изменением величины переменного тока в катушках статора.

Наиболее эффективно вибратор работает в резонансном режиме, который обеспечивается при равенстве частоты тока в катушке и собственной частоты колебаний механической системы. Собственная частота определяется моментом инерции якоря вибратора с вибрируемой нагрузкой и жесткостью применяемого упругого элемента.

К недостатку такого вибратора можно отнести то, что на частотах, отличных от собственной, вибрационный момент колебаний, прикладываемый к ротору с нагрузкой, резко падает. Это ограничивает возможности применения решения. Также указанная конструкция достаточно сложна, это объясняется необходимостью применения набора упругих элементов и их замены для обеспечения эффективных вибраций необходимой частоты.

Задачей изобретения является повышение технических характеристик вибратора крутильных колебаний, расширение области его применения и снижение расходов на его эксплуатацию.

Технический результат состоит в обеспечении возможности оперативного и независимого управления изменения частоты и величины крутильных колебаний. Изменение величины крутильного момента достигается изменением уровня тока в катушках обмотки возбуждения, а изменение частоты момента - изменением скорости вращения подвижного магнитопровода приводным двигателем. При этом технический результат достигается обменом между кинетической энергией вращения и магнитной энергией системы вибратора без использования в конструкции упругих элементов, что повышает надежность, долговечность работы и КПД преобразования потребляемой энергии в энергию создаваемых крутильных колебаний.

Предложенное техническое решение содержит первый и второй соосные многополюсные магнитопроводы с зазором между их полюсами. На полюсах первого магнитопровода помещены катушки обмотки возбуждения, которая присоединена к источнику напряжения с регулируемым постоянным напряжением. Второй магнитопровод выполнен с возможностью его вращения приводным двигателем. В зазоре между магнитопроводами с полюсами помещен с возможностью углового колебательного движения цилиндрический якорь, на котором закреплены магнитопроводы якоря. Якорь прикрепляется к вибрируемому объекту.

Отличительными от прототипа признаками являются выполнение второго магнитопровода вращающимся с заданной частотой и введение в магнитную систему между первым и вторым магнитопроводами цилиндрического якоря с возможностью его колебательного движения, у которого магнитопроводы закреплены напротив полюсов первого магнитопровода, при этом катушки обмотки возбуждения присоединены к регулируемому источнику постоянного напряжения. Для увеличения энергопреобразования вибратора, выражающегося в увеличении формируемой силы, в цепь между источником постоянного напряжения и обмоткой возбуждения вибратора может быть включен электрический дроссель.

Конструктивное выполнение вибратора и его работа поясняются чертежами:

фиг.1 и 2 - поперечный и продольный разрезы вибратора, фиг.3 - фрагмент линейной развертки магнитной системы вибратора, фиг.4 - диаграмма тока обмотки возбуждения и соответствующего ему крутильного момента вибратора на интервале полюсного деления магнитопроводов, фиг.5 - электрическая схема питания обмотки возбуждения.

В корпусе 1 (фиг.1, 2) закреплены магнитопровод 2, с катушками 3 обмотки возбуждения на полюсах 4. Концентрически с ним расположен магнитопровод 5 с полюсами 6, количество которых равно количеству полюсов 4. В зазоре а между полюсами 4 и 6 расположен цилиндрический немагнитный якорь 7, на котором закреплены магнитопроводы 8 якоря, отделенные от полюсов 4 технологическим зазором, для обеспечения углового колебательного движения якоря 7 с магнитопроводами 8 относительно полюсов 4. Магнитопровод 5 и якорь 7 отделены от корпуса 1 подшипниками для обеспечения вращения магнитопровода 5 приводным двигателем и колебательного перемещения якоря 7 относительно полюсов 4. Стойки 9, соединенные с якорем 7, пропущены через отверстия в корпусе 1 и жестко соединены с деталью 10, на которую передается крутильный момент вибратора.

Вибратор работает следующим образом. Магнитопровод 5 вращается с угловой скоростью ω с помощью приводного двигателя (на фиг.1, 2 не показан). При подключении обмотки возбуждения к источнику с регулируемым постоянным напряжением (на фиг. не показан) по катушкам 3 обмотки возбуждения протекает ток. При этом через зазор между полюсами 4, 6 проходит поток. При вращении магнитопровода 5 его полюса периодически перекрывают магнитопроводы 8 якоря (фиг.2, 3), что приводит к периодическому изменению магнитной проводимости G(x) между ними и созданию между полюсами 6 на вращающемся магнитопроводе и магнитопроводами 8 якоря силы:

где F=iw - магнитодвижущая сила катушек обмотки возбуждения, с числом витков w, необходимая для создания в зазоре между полюсами и магнитопроводами якоря магнитного поля.

Значение магнитной проводимости G(x) определяется положением х полюсов 6 вращающегося магнитопровода 5 относительно магнитопроводов 8 якоря. Направление перемещения х якоря изображено на фиг.3.

При 0<х<с (фиг.3), где с - ширина полюсов в направлении х, проводимость G(x) увеличивается за счет увеличения площади перекрытия полюсов 6 и магнитопроводов 8 якоря, а при с<х<2 с - G(x) уменьшается. Это приводит к увеличению или соответственно уменьшению индуктивности обмотки возбуждения и в ней индуктируется ЭДС движения, следствием которой является изменение тока возбуждения и создаваемой силы, а также сопровождается появлением переменного крутильного момента М=Pr, где r - внешний радиус якоря.

На фиг.4 показаны диаграммы изменения относительных значений тока i и момента М на интервале создания знакопеременного значения силы от положения х. Диаграммы изображены при различных относительных значениях индуктивности , где Ld - индуктивность дросселя в цепи обмотки возбуждения и L0 - ее индуктивность при х=0.

Знакопеременный характер прикладываемой к магнитопроводу якоря силы обеспечивает действие на якорь крутильного момента М.

При 0<х<с действие момента М приводит к ускорению вращающегося магнитопровода 5, а при с<х<2с - к его торможению и преобразованиям, магнитной энергии в механическую и механической в магнитную, соответственно.

Таким образом, в предложенном решении в течение интервала 0<х<2с, соответствующего периоду изменения момента М, осуществляется периодический обмен между энергией магнитного поля вибратора и механической энергией вращения магнитопровода 5. Из графиков на фиг.4 следует, что увеличение индуктивности Ld дросселя (фиг.5) и соответствующего ему значения α приводит к увеличению среднего значения момента на полупериоде колебаний, при этом пульсация тока возбуждения уменьшается.

Частота крутильного момента пропорциональна количеству полюсов n на магнитопроводе и частоте вращения магнитопровода 5 приводным двигателем.

Величина момента зависит от тока в катушках 3 и может регулироваться величиной напряжения с помощью управляемого выпрямителя или преобразователя постоянного напряжения.

Таким образом, предложенное техническое решение в отличие от прототипа позволяет обеспечивать относительное независимое регулирование величины и частоты создаваемого крутильного момента. Причем в отличие от известных резонансных вибраторов, в том числе и прототипа, в которых обмен энергией происходит между кинетической энергией и энергией деформации механической пружины, в предлагаемом решении роль "пружины" выполняет энергия магнитного поля вибратора, причем необходимый энергообмен обеспечивается при изменении частоты и величины создаваемого крутильного момента. Такое решение позволяет расширить возможности применения вибратора в режимах, требующих оперативного изменения величины и частоты крутильного момента, повысить КПД преобразования потребляемой энергии в энергию создаваемых вибратором колебаний, а также снизить расходы при его эксплуатации.

Источники информации

1. Авторское свидетельство СССР №992103 В06В 1/04. Опубл. 30.01.83. Бюл. №4.

2. Патент на полезную модель РФ №99996171, В06В 1/04. Опубл. 10.12.10 г.

Электромагнитный вибратор крутильных колебаний, содержащий первый и второй соосные многополюсные магнитопроводы с зазором между их полюсами, на полюсах первого магнитопровода помещены катушки обмотки возбуждения, и источник их электропитания, отличающийся тем, что второй магнитопровод выполнен с возможностью вращения, в зазоре между полюсами магнитопроводов помещен с возможностью углового колебательного движения цилиндрический якорь, на котором напротив полюсов первого магнитопровода закреплены магнитопроводы якоря, а катушки обмотки возбуждения присоединены к регулируемому источнику постоянного напряжения.



 

Похожие патенты:

Изобретение относится к области гидроакустики и может быть использовано в системах активного воздействия на нарушителей охраняемых акваторий и надводных объектов.

Изобретение относится к электротехнике и электромашиностроению и может быть использовано в вибрационных машинах и устройствах. .

Изобретение относится к технике обнаружения скрытых коммуникаций: кабелей металлических и пластмассовых трубопроводов, находящихся под слоем грунта, снега, асфальта.

Изобретение относится к электротехнике и может быть использовано для излучения электромагнитных колебаний. .

Изобретение относится к вибрационной технике. .

Изобретение относится к вибрационной технике. .

Изобретение относится к вибрационной технике. .

Изобретение относится к вибрационной технике. .

Изобретение относится к вибрационной технике. .

Изобретение относится к вибрационной технике. .

Изобретение относится к области измерительной техники и может быть использовано для измерения и регистрации морского волнения методом импульсной эхолокации узконаправленным лучом в направлении от дна к поверхности воды

Изобретение относится к электротехнике и может найти широкое применение для виброперемешивающих устройств в аппаратах и реакторах нефтехимических, химических, микробиологических, пищевых и других производств. Вибропривод содержит опорную плиту, кольцевые электромагниты, якоря которых соединены с рабочими штоками и упругими элементами. Один вибропривод установлен на опорной плите на крышку корпуса, на которой закреплен упругий элемент с якорем, а статор электромагнита установлен на фланец корпуса сверху. Электрические катушки одного электромагнита запитаны через полупроводник одним полупериодом тока, а электрические катушки другого вибропривода запитаны через другой полупроводник вторым полупериодом тока. Технический результат состоит в уменьшении энергопотребления и потерь полезной мощности за счет того, что тяговое усилие электромагнита одного вибропривода, переданное на опорную плиту, погашено усилием упругого элемента другого вибропривода. 2 ил.

Изобретение относится к способам и устройствам для получения механических колебаний с использованием электрической энергии. Способ случайного смещения грузов включает в себя то, что на станине или раме закрепляют статор или группу статоров, причем корпус каждого статора, как и его внутреннее пространство делят на сектора, в которых размещают индукторы, с помощью которых производят генерирование электрического тока или магнитных полей, текущих во внутреннем пространстве своего сектора, так же во внутреннем пространстве каждого статора располагают вал ротора не менее чем с одним колесом, причем на каждом колесе закрепляют ось с сегментами, между сегментами в плоскости вращения ротора формируют равные зазоры, в которых устанавливают упругие элементы, причем сегменты выполняют с возможностью качения на своих осях, и имеющими эксцентриситет массы, точки эксцентриситета массы которых в плоскости вращения ротора лежат за окружностью, перпендикулярно которой лежат их оси, содержащие обмотки с сердечниками, которыми генерируют магнитные поля или электрический ток, и которые подключают к электрическим цепям устройства через коллекторно-щеточный механизм или постоянные магниты. Технический результат, достигаемый заявленным изобретением, заключается в создании устройства большой удельной мощности, которое во время своей работы не генерирует сильной вибрации и может быть использовано для формирования случайных смещений грузов для разных потребностей техники. 18 з.п. ф-лы, 9 ил.

Изобретение относится к измерительной технике, представляет собой способ возбуждения акустических колебаний электромагнитно-акустическим (ЭМА) методом с использованием явления ЭМА-резонанса и может применяться при неразрушающем контроле, в частности, слабопроводящих материалов. Способ заключается в том, что в верхнем слое контролируемого изделия создают вихревые токи и инициируют возникновение и распространение акустических колебаний, при этом частоту возбуждающего поля выбирают из условий равенства длин волн электромагнитного и акустического полей, а фазу подстраивают до совпадения пространственного распределения вынуждающей силы с деформациями кристаллической решетки. Техническим результатом является повышение эффективности возбуждения акустических колебаний электромагнитно-акустическим методом. 1 з.п. ф-лы, 3 ил.

Изобретение относится к технике защиты информации, при которой осуществляется уничтожение информации как на основании получения сигналов о попытке несанкционированного проникновения, так и по желанию пользователя. Технический результат: повышение эффективности защиты информации, размещенной на цифровом накопителе, при возникновении опасности ее утечки за счет ударно-механического и электромагнитного воздействия. Сущность: электромеханическое импульсное устройство ударно-механического и электромагнитного воздействия состоит из ферромагнитного каркаса 1, внутри которого коаксиально расположены индуктор 2, электропроводящий якорь 3 и ферромагнитный боек 4. К одной плоской поверхности электропроводящего якоря 3 присоединен силовой диск 5. Боек 4 выполнен с заостренным закаленным концом, направленным в сторону цифрового накопителя информации 6. Внутри каркаса 1 расположено несколько рычагов, каждый из которых состоит из двух противоположных плеч 7 и 8, разделенных опорой 9. Плоский конец 4в бойка 4 взаимодействует с плечом 7 рычага, а силовой диск 5 взаимодействует с плечом 8 рычага. Опоры рычагов 9 зафиксированы относительно съемной крышки каркаса 1. Катушка индуктора 2 намотана на направляющую втулку 10 бойка 4. Участок поверхности силового диска 5, взаимодействующий с плечом 8 рычага, выполнен выступающим. Для увеличения высоты выступающая часть силового диска 5 снабжена толкателем 11, выполненным в виде кольца. 10 з.п. ф-лы, 11 ил. При получении сигнала происходит возбуждение индуктора 2 от заряженного емкостного накопителя. Протекающий импульсный ток в индукторе 2 возбуждает магнитное поле, уничтожая находящуюся на накопителе 6 информацию. Магнитное поле индуктора 2 возбуждает вихревые токи в электропроводящем якоре 3. Возникающие при этом электродинамические силы обуславливают перемещение последнего вместе с силовым диском 5 от индуктора. Силовой диск 5 через толкатель 11 воздействует на плечи рычагов 8, конец которых перемещается в направлении от индуктора 2. При этом происходит поворот рычагов относительно неподвижных опор 9 и концы противоположных плеч рычагов 7 перемещаются в направлении индуктора 2, осуществляя силовое воздействие на плоский конец 4 бойка 4. При этом боек 4 перемещается в направлении индуктора, пробивая своим заостренным закаленным концом цифровой накопитель 6.

Предложен низкочастотный излучатель электромагнитной энергии. Он содержит трансформаторы с магнитопроводом, замыкающимся с помощью излучателей и вторичных обмоток трансформаторов. При этом магнитопровод первого трансформатора проходит через вторичную обмотку второго, а магнитопровод второго трансформатора проходит через вторичную обмотку первого. При этом излучатели трансформаторов соосно расположены относительно друг друга. Также предложен способ изготовления указанного выше низкочастотного излучателя электромагнитной энергии. 2 н. и 3 з.п. ф-лы, 3 ил.

Группа изобретений относится к пищевой, микробиологической, косметической, фармацевтической, химической, нефтехимической и другим областям промышленности. Генератор крутильных колебаний содержит корпус 8, платформу 3, реактивный диск 10, основной торсион, разделенный на две неравнозначные части, узловую точку 7 соединения частей основного торсиона, электромагнитную систему 6. Генератор снабжен дополнительным торсионом 1. Длинная часть 2 основного торсиона соединена с платформой. Реактивный диск 10 расположен на конце короткой части 9 торсиона. Узловая точка 7 жестко соединена с корпусом 8. Возбуждение крутильных колебаний осуществлено посредством дополнительного торсиона 1, подсоединенного одним концом к концу длинной части 2 основного торсиона посредством платформы 3, а другим - к электромагнитной системе 6 воздействия на дополнительный торсион 1. Группа изобретений направлена на обеспечение смешения гомо- и гетерогенных многокомпонентных жидких продуктов с высокой вязкостью, смешении высоковязких жидкостей и порошков с возможностью одновременного дробления порошков до наноразмеров в среде смешиваемых компонентов. 2 н. и 10 з.п. ф-лы, 24 ил.
Наверх