Способ ионообменной очистки сточной воды от ионов металлов


 


Владельцы патента RU 2470877:

Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) (RU)

Изобретение может быть использовано на предприятиях в процессах водоподготовки и оборотного водоснабжения, а также в производстве пивобезалкогольной продукции и очистке питьевой воды. Способ ионообменной очистки сточной воды от ионов металлов включает пропускание через смесь аминокарбоксильного катионита и низкоосновного анионита полимеризационного типа. В качестве смеси ионитов используют смесь полимерных сорбентов, представляющую собой продукт совместной обработки гидразингидратом в присутствии сульфата гидразина и гидразида уксусной кислоты при температуре 102°С в течение двух часов смеси равных количеств вторичных полимеров метилакрилата, дивинилсульфида, этилендиамина, акрилонитрила, стирола при соотношении группировок дивинилсульфид : этилендиамин : акрилонитрил : стирол : гидразид акриловой кислоты - 1:1:1:1:1. Способ обеспечивает увеличение эффективности удаления ионов металлов при их большом ассортименте в составе очищаемой воды при наличии сопутствующих органических загрязнителей и повышение стабильности очистки при изменении температуры воды. 1 табл., 1 пр.

 

Изобретение относится к способам ионообменной очистки сточной воды и технологических растворов от ионов металлов с применением полимерных сорбентов и может быть использовано на предприятиях в процессах водоподготовки и оборотного водоснабжения, а также в производстве пивобезалкогольной продукции и очистке питьевой воды.

Известен способ очистки воды от ионов металлов при их совместном присутствии фильтрацией через сополимерные сорбенты, содержащие этилендиаминовые группировки (см. авторское свидетельство СССР №966023, кл. C02F 1/42). Указанный способ обладает селективностью только по отношению к ионам трехвалентного железа (Fe3+), что является его недостатком, так как ограничено его применение и работоспособность при содержании в воде других ионов.

Известен способ очистки водного раствора, содержащего ионы меди, цинка, железа, путем их пропускания через ионообменные смолы, полученные аминированием (гидразинированием) гидразином сополимера метилакрилата и дивинилбензола (см. авторское свидетельство СССР №528310, кл. C08F 226/02, C08F 8/32, 1975).

Недостатком способа является низкая степень совместной очистки водных растворов от ионов металлов переменной валентности (медь, цинк, никель, хром, железо и т.д.) особенно в присутствии органических загрязнителей.

Известен способ глубокой очистки хромсодержащих и кислотощелочных сточных вод от ионов тяжелых металлов с применением сорбентов с гидразидными фрагментами (Г.И. Зубарева. Технологические схемы глубокой очистки гальваностоков от ионов тяжелых металлов с применением высокоэффективных собирателей. Химическая промышленность, 8. 2001).

Основными недостатками способа являются селективность по отношению к ионам хрома (Сr3+) и ограниченные возможности удаления ионов других металлов при разнообразном ассортименте и содержании солей в очищаемой воде и снижение эффективности очистки при наличии органических загрязнителей и повышении температуры.

Известен способ удаления из сточных вод поливалентных металлов путем фильтрации через волокнистый кислотостойкий ионообменный фильтровальный материал, включающий полиакриловую кислоту и гидразид полиметакриловой кислоты (Патент РФ 2190454, М.кл. В01D 39/06, B01J 39/08, С03С 25/28).

Недостатками данного способа являются пониженная обменная емкость ионита, селективность по отношению к сорбируемым ионам (Сu2+, Fe2+ Ni2+), ограниченная работоспособность при колебании состава и концентрации солей в водном растворе, а также при наличии загрязнителей органического характера и повышении температуры.

Наиболее близким к изобретению по технической сущности и достигаемому результату является способ очистки сточных вод и технологических растворов от ионов никеля и меди путем их пропускания через ионообменные смолы, в качестве которых используют смесь аминокарбоксильного катионита и низкоосновного анионита полимеризационного типа, взятых в объемном соотношении (0,5÷1,5):1 соответственно, при этом аминокарбоксильный катион берут в Kat+ или Kat/H+ - форме, где Kat+ - ион щелочного металла или аммония, а низкоосновный анионит берут в ОН- или ОН-/Аn-форме, где An- - анион минеральной кислоты [Патент на изобретение РФ №2049073, МПК6 C02F 1/42, 1994].

Недостатками способа являются недостаточная эффективность очистки водных растворов от ионов других металлов особенно в присутствии органических загрязнителей, а также неустойчивые характеристики при повышении температуры очищаемых растворов.

Техническим результатом изобретения является увеличение эффективности удаления ионов металлов при их большом ассортименте в составе очищаемой воды при наличии сопутствующих органических загрязнителей и повышение стабильности очистки при изменении температуры воды. Поставленный технический результат достигается тем, что согласно предлагаемому способу, включающему пропускание сточной воды через смесь аминокарбоксильного катионита и низкоосновного анионита полимеризационного типа, взятых в катионной и анионной форме, используют смесь полимерных сорбентов, представляющую собой продукт совместной обработки гидразингидратом в присутствии сульфата гидразина и гидразида уксусной кислоты при температуре 102°С в течение двух часов смеси равных количеств вторичных полимеров метилакрилата, дивинилсульфида, этилендиамина, акрилонитрила, стирола при соотношении группировок дивинилсульфид : этилендиамин : акрилонитрил : стирол : гидразид акриловой кислоты - 1:1:1:1:1.

По данному способу сорбцию ведут на сорбенте, который получен смешением равных количеств вторичных полимеров метилакрилата, дивинилсульфида, этилендиамина, акрилонитрила, стирола с последующей обработкой гидразингидратом в присутствии сульфата гидразина и гидразида уксусной кислоты при температуре 102°С в течение двух часов (гидразинолиз) (см. Авт.свид. СССР 157105, 1962 г.). При этом получают смесь вторичных полимеров при соотношении группировок дивинилсульфид : этилендиамин : акрилонитрил : стирол : гидразид акриловой кислоты - 1:1:1:1:1.

Отличие предлагаемого способа от прототипа заключается в том, что очищаемую воду пропускают через смесь полимерных сорбентов, представляющих собой продукт совместной обработки гидразингидратом в присутствии сульфата гидразина и гидразида уксусной кислоты при температуре 102 С в течение двух часов смеси равных количеств вторичных полимеров метилакрилата, дивинилсульфида, этилендиамина, акрилонитрила, стирола, содержащую группировки дивинилсульфид, этилендиамин, акрилонитрил, стирол, гидразид акриловой кислоты в соотношении 1:1:1:1:1. Осуществление очистки воды на таком полимерном сорбенте неизвестно.

Технология способа состоит в том, что очищаемый водный раствор, содержащий загрязнители, включая соли тяжелых металлов, и органические загрязнители, пропускают в колонке через смесь полимерных сорбентов, представляющую собой продукт совместной обработки гидразингидратом в присутствии сульфата гидразина и гидразида уксусной кислоты при температуре 102°С в течение двух часов смеси равных количеств вторичных полимеров метилакрилата, дивинилсульфида, этилендиамина, акрилонитрила, стирола, содержащую дивинилсульфидные, этилендиаминовые, акрилонитрильные, стирольные, гидразида акриловой кислоты группировки в соотношении 1:1:1:1:1, обменная емкость которого по Fe3+ составляет 280±5 мг/г.

Технический результат, который достигается вышеизложенной совокупностью существенных признаков, объясняется тем, что в смеси полимеризационной ионообменной смолы появляется расширенный набор активных группировок =S,- С≡N,- СНСH(NH2)2,- C(O)NHNH2, - NH2, которые взаимодействуют друг с другом, создают электростатический и комплексообразующий эффект за счет полярности и структурируют эффективные надмолекулярные образования, обеспечивая активную очистку воды от смеси ионов металлов за счет комплексообразования и хемосорбции, что приводит к значительному улучшению технологии очистки в присутствии органических загрязнителей (нефтепродукты).

Также проявляется комплексная активность сорбента за счет более полного использования свойств нитрильных -С≡N, сульфидных =S, амино -NH2 и гидразидных группировок -NHNH2. Данный полимерный сорбент малочувствителен к колебаниям температуры в пределах 1-90°С, рН среды, концентрации солей и других загрязнителей, не теряет механической прочности в цикле работа - регенерация. Набор активных группировок позволяет эффективно очищать воду от широкого набора ионов металлов: Сu2+, Fe2+, Ni2+, Zn2+, Cr3+, Cr6+, Fe3+, Co3+, Hg1+.

При этом из воды удаляются загрязнения и она становиться чистой, пригодной для использования в водообороте. Способ апробирован на лабораторной установке.

Пример

Модельный раствор, содержащий ионы Cu2+, Fe2+, Ni2+, Zn2+, Cr3+, Cr6+, Fe3+, Co3+, Hq1+ в виде солей (противоионы Сl-, SO42-) и органические загрязнители (1,25 мг/л) пропускают снизу со скоростью 5 л/ч через колонку высотой 100 мм и диаметром 11,3 мм, наполненную полимерным сорбентом - продуктом гидразинолиза смеси равных количеств вторичных полимеров метилакрилата, дивинилсульфида, этилендиамина, акрилонитрила и стирола, содержащим дивинилсульфидные, этилендиаминовые, акрилонитрильные, стирольные, гидразида акриловой кислоты группировки в соотношении 1:1:1:1:1, имеющего статическую обменную емкость по Fr3+ 280±5 мг/г. Сверху колонки имеется слой мелкого гравия и решетчатая перегородка для предотвращения уноса сорбента. На выходе из колонки периодически отбираются пробы и осуществляется их анализ стандартными методами. Остаточное содержание загрязнителей в воде после очистки соответствует гигиеническим требованиям к качеству воды централизованных систем водоснабжения (СанПиН 2.1.4.559-96). Активация полимерного сорбента в цикле работа - регенерация осуществляется 10%-ным водным раствором H2SO4 противотоком. Результаты реализации способа в сравнении с прототипом приведены в таблице.

Из вышеизложенного следует, что каждый из признаков заявляемой совокупности влияет на достижение поставленной задачи, а именно повышение степени очистки водных растворов от комплекса загрязнителей в широком диапазоне температур, а вся совокупность является достаточной для характеристики заявляемого технического решения. Способ является полезным для решения экологических задач водоочистки, особенно на стадии тонкой очистки воды, создания замкнутого технологического водооборота и питьевого водоснабжения.

Показатели
Предлагаемый способ Прототип
Состав очищаемого Состав очищаемого
водного раствора, мг-экв/л, водного раствора, мг-экв/л
Сu2+ 1,25 Cu2+ 1,20
Zn2+ 1,25 Ni2+ 1,25
Fe3+ 1,25 Органические загрязнители, мг/л нет
Ni2+ 1,25
Cr3+ 1,25
Cr6+ 1,25
Fe2+ 1,25
Co3+ 1,25
Hg1+ 1,25
Органические
загрязнители, мг/л 1,25
Температура процесса, °С 19-25
1-90 (комнатная)
Водный раствор после очистки
соответствует СанПиН 2.1.4.559-96

Из данных таблицы видно, что предлагаемый способ является более эффективным: позволяет очищать воду с большим разнообразием загрязнителей в широком диапазоне температур.

Способ ионообменной очистки сточной воды от ионов металлов путем ее пропускания через смесь аминокарбоксильного катионита и низкоосновного анионита полимеризационного типа, взятых в катионной и анионной форме, отличающийся тем, что используют смесь полимерных сорбентов, представляющую собой продукт совместной обработки гидразингидратом в присутствии сульфата гидразина и гидразида уксусной кислоты при температуре 102°С в течение двух часов смеси равных количеств вторичных полимеров метилакрилата, дивинилсульфида, этилендиамина, акрилонитрила, стирола при соотношении группировок дивинилсульфид: этилендиамин: акрилонитрил: стирол: гидразид акриловой кислоты - 1:1:1:1:1.



 

Похожие патенты:

Изобретение относится к электровзрывной дезинтеграции и активации водных суспензий, эмульсий, коллоидных растворов, а также к очистке воды от загрязнителей природного и антропогенного происхождения.

Изобретение относится к электровзрывной дезинтеграции и активации водных суспензий, эмульсий, коллоидных растворов, а также к очистке воды от загрязнителей природного и антропогенного происхождения.

Изобретение относится к получению активированной воды и может быть использовано в биотехнологии, сельском хозяйстве, в косметологии, медицине и фармацевтике, экологии и восстановлении природной среды, пищевой промышленности и общественном питании.

Изобретение относится к получению активированной воды и может быть использовано в биотехнологии, сельском хозяйстве, в косметологии, медицине и фармацевтике, экологии и восстановлении природной среды, пищевой промышленности и общественном питании.

Изобретение относится к области водоочистки и водоподготовки. .

Изобретение относится к устройствам и установкам для очистки природных и сточных вод, а именно, к получению сорбента-катализатора для очистки природных и сточных вод на основе шунгита.

Изобретение относится к устройствам для обработки промышленных сточных вод и предназначено для очистки вод, загрязненных отходами нефти, продуктами ее переработки, жирами, маслами, продуктами органического синтеза, поверхностно-активными веществами, тонкодиспергированными легкими взвесями.

Изобретение относится к фильтрующему патрону, в частности, емкостей с перколяционным фильтром и способу его изготовления. .

Изобретение относится к системе трубопроводов и может использоваться для подачи пресной воды от источника соленой воды к объекту назначения. .
Изобретение относится к области процессов сорбционного извлечения примесей из растворов, а также к области переработки алюминийсодержащего сырья кислотными способами.

Изобретение относится к способам ионообменной очистки водных растворов, содержащих соли металлов переменной валентности, и может быть использовано в различных отраслях промышленности при очистке технологической, сточной и питьевой воды.

Изобретение относится к гидрометаллургии и позволяет повысить эффективность разделения меди и железа. .
Изобретение относится к материалам для очистки от разливов нефти и нефтепродуктов. .
Изобретение относится к области охраны окружающей среды. .
Изобретение относится к области водоочистки и может быть использовано для получения питьевой воды высшего качества с улучшенными физико-химическими и органолептическими свойствами после ее бутилирования.
Наверх