Способ изготовления абразивного инструмента

Авторы патента:

 


Владельцы патента RU 2472609:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет (RU)

Изобретение относится к области изготовления ручного абразивного инструмента, в частности напильников и надфилей. Способ включает нанесение на металлическую заготовку абразивного покрытия с требуемой шероховатостью. Для этого путем детонационного напыления наносят твердосплавное абразивное покрытие с требуемой шероховатостью, которую получают выбором толщины напыленного слоя и дисперсностью напыляемых частиц. Технический результат настоящего изобретения заключается в повышении производительности изготовления абразивного инструмента. 1 табл.

 

Изобретение относится к области изготовления ручного абразивного инструмента, в частности напильников и надфилей.

Известен аналогичный способ изготовления напильников [1], который включает в себя закрепление режущих элементов на основании. В качестве режущих элементов используют стерженьки, изготовленные из инструментальной стали, например марки У13 или ШХ15 или другого материала, стойкого в щелочной среде. Затем закрепленные на основании стержни погружают в твердеющую среду, извлекают из нее, выдерживают и освобождают кончики стержней от затвердевшей среды. Недостатком вышеописанного способа является трудоемкость и длительность процесса изготовления абразивного инструмента.

Известен аналогичный способ изготовления рабочего слоя абразивного инструмента [2], при котором шихту связки и абразива перемешивают в магнитном поле, после чего осуществляют прессование, спекание и горячее прессование полученной абразивной массы. В качестве абразива берут синтетические алмазы, а компоненты связки перед перемешиванием намагничивают до величины магнитной восприимчивости, в 3-10 раз большей величины магнитной восприимчивости алмазов. Недостатком данного способа является трудоемкость и длительность процесса изготовления инструмента.

В качестве прототипа выбран способ получения абразивного алмазного инструмента, при котором на поверхность подложки наносят алмазные частицы и композиционный припой [3]. Последний содержит легкоплавкую матрицу, тугоплавкий наполнитель и связующее вещество. Нагревают подложку с нанесенными на нее алмазными частицами и композиционным припоем выше температуры плавления легкоплавкой матрицы и выдерживают при этой температуре. Затем отжигают в вакууме или в защитной атмосфере при температуре испарения компонентов легкоплавкой матрицы. В результате образуется алмазосодержащая связка с многофазной структурой псевдосплава, обеспечивающая высокую износостойкость связки, прочность удержания алмазных частиц и теплопроводность. Недостатком способа-прототипа является трудоемкость и длительность процесса изготовления инструмента.

Технический результат настоящего изобретения заключается в повышении производительности изготовления абразивного инструмента.

Технический результат достигается тем, что на металлическую заготовку наносят абразивное покрытие с требуемой шероховатостью, при этом путем детонационного напыления наносят твердосплавное абразивное покрытие с требуемой шероховатостью, которую получают выбором толщины напыленного слоя и дисперсностью напыляемых частиц.

Поставленная задача решается за счет детонационного напыления на металлическую заготовку твердого покрытия, например, твердого сплава с шероховатостью, обеспечивающей необходимое абразивное действие поверхности. Шероховатостью твердого покрытия можно управлять с помощью дисперсности порошка и толщины напыленного слоя. Чем толще наносимый слой и крупнее частицы напыляемого материала, тем достигается более высокая шероховатость. Скорость детонационного напыления с помощью современных установок позволяет наносить до 3-х килограмм покрытия в час, а твердость твердосплавного покрытия (до 15000 МПа) до 2-х раз выше, чем у закаленных сталей. Это позволяет получать абразивный инструмент с высокой производительностью. Кроме того, твердосплавное покрытие в качестве абразивного материала обладает более высокой коррозионной стойкостью, износостойкостью и краскостойкостью, чем стальные напильники, и более высокой термостойкостью, чем алмазные напильники. Для формирования покрытия можно использовать порошки карбидвольфрамовых твердых сплавов с содержанием кобальтовой связки от 4 до 20% (например, порошки марок ВК-12, ВК-10, ВК-4 и др.), а также смеси вышеуказанных порошков с порошками других твердых материалов, например корунда (Al2O3). Для обработки мягких металлов, полимеров и древесины можно использовать порошки легированных сталей (ПР-Х11Г4СР, ПР-Н9Г4СР и др.), формирующих покрытие с твердостью, характерной для стандартных напильников (58...62 HRC). Рекомендуемые режимы нанесения покрытия с помощью автоматизированных детонационных установок: частота выстрелов 4 Гц, детонирующая газовая смесь - ацетилен (50%), кислород (50%); коэффициент заполнения ствола детонирующей газовой смесью - 50-70%; дисперсность порошка 30…50 мкм; дистанция напыления 150…200 мм. При данных режимах напыления для порошка твердого сплава ВК-12 значения шероховатости покрытия Rmax (мкм) в зависимости от толщины h (мкм) и дисперсности d (мкм) частиц приведены в таблице.

Заявляемый способ реализуется следующим образом. Делают металлическую заготовку для абразивного инструмента необходимой формы и размеров. Наносят на металлическую заготовку абразивное покрытие с требуемой шероховатостью.

Пример. Изготавливали надфиль для обработки детали из стали 40Х после закалки и отпуска (HV 350). Для возможности обработки данной стали твердость рабочей поверхности надфиля должна быть в три раза выше твердости обрабатываемого материала, т.е. 1050 HV. Для обеспечения такой твердости выбрали в качестве материала для напыления порошок твердого сплава ВК-12, обеспечивающий твердость покрытия 1100…1400 HV. В качестве основы для надфиля брали заготовку из стали 40 с твердостью 220 кгс/мм2 и площадью рабочей поверхности 12 см2. Эксперименты показали, что заметное абразивное действие начинает проявляться при шероховатости покрытия Rmax≥15 мкм, поэтому для создания абразивного покрытия использовали порошок дисперсностью 40 мкм и формировали слой покрытия толщиной 40…50 мкм. Длительность обработки составила 3…4 секунды. Твердость покрытия составила 1340 кгс/мм2. Испытания надфиля показали его работоспособность при опиливании выбранной детали. Описанный пример указывает на то, что заявленный способ позволяет получить заявленный результат.

Литература

1. Патент РФ №2120842. Способ изготовления напильников / Головач В.А. Опубл. 27.10.1998.

2. А.с. SU 1187971. Способ изготовления рабочего слоя абразивного инструмента / Бурман Л.Л., Уман СМ., Филатов Ю.Д., Невструев Г.Ф. Опубл. 30.10.1985, бюл. №40.

3. Патент РФ №2362666. Способ получения абразивного алмазного инструмента / Соколов Е.Г., Соколов Г.Я., Грознов Р.И. Опубл. 27.07.2009, бюл. №21.

Способ изготовления абразивного инструмента, включающий нанесение на металлическую заготовку абразивного покрытия с требуемой шероховатостью, отличающийся тем, что путем детонационного напыления наносят твердосплавное абразивное покрытие с шероховатостью, степень которой получают за счет выбора толщины напыленного слоя и дисперсности напыляемых частиц материала.



 

Похожие патенты:

Изобретение относится к технологии напыления покрытий на металлические поверхности и может быть использовано в электротехнической промышленности для напыления на контактные поверхности покрытий, обладающих высокой электроэрозионной стойкостью.

Изобретение относится к технологии напыления покрытий на металлические поверхности и может быть использовано в электротехнической промышленности для напыления на контактные поверхности покрытий, обладающих высокой электроэрозионной стойкостью.

Изобретение относится к способу нанесения покрытия из оксида алюминия на деталь, имеющую поверхность из карбида кремния (SiC) и используемую в высокотемпературных областях техники.

Изобретение относится к способу получения реагирующей с водой алюминиевой пленки и составляющего элемента для пленкообразующей камеры. .

Изобретение относится к реагирующему с водой алюминиевому композитному материалу, реагирующей с водой алюминиевой пленке, способу получения данной алюминиевой пленки и составляющему элементу для пленкообразующей камеры.

Изобретение относится к реагирующему с водой алюминиевому композитному материалу, реагирующей с водой алюминиевой пленке, способу получения данной алюминиевой пленки и составляющему элементу для пленкообразующей камеры.

Изобретение относится к реагирующему с водой алюминиевому композитному материалу, реагирующей с водой алюминиевой пленке и способу получения данной алюминиевой пленки.

Изобретение относится к реагирующему с водой алюминиевому композитному материалу, реагирующей с водой алюминиевой пленке и способу получения данной алюминиевой пленки.

Изобретение относится к способу получения реагирующей с водой алюминиевой пленки и составляющего элемента для пленкообразующей камеры, который покрыт этой алюминиевой пленкой.

Изобретение относится к способу получения реагирующей с водой алюминиевой пленки и составляющего элемента для пленкообразующей камеры, который покрыт этой алюминиевой пленкой.

Изобретение относится к машиностроению и может быть использовано при обработке поверхностей изделий вращающимися проволочными валиками на конвейерных лентах. .

Изобретение относится к машиностроению и может быть использовано в металлорежущих инструментах при обработке различных деталей

Изобретение относится к производству абразивного инструмента, в частности токопроводящих алмазных кругов на металлической связке, и может быть использовано в машиностроении, авиадвигателестроении и других областях техники для обработки различных материалов шлифованием. Абразивный инструмент выполнен в виде несущего абразивные элементы корпуса, состоящего из соединенных между собой наружного и внутреннего концентрично расположенных колец из токопроводящего материала. Кольца соединены посредством радиально расположенных элементов в виде стержней, количество и сечение которых выбрано по заданному параметру плотности тока из условия равнопрочности инструмента в радиальном и тангенциальном направлениях. Пространство между наружным и внутренним кольцами заполнено высокопрочным композиционным материалом с низкой плотностью, толщина которого меньше ширины колец. Снижается масса абразивного интсрумента, повышается жесткость конструкции. 2 ил.
Изобретение относится к абразивному инструменту, содержащему плавленые зерна. Абразивные зерна имеют химический состав в мас.% на основе оксидов: Al2O3 остальное до 100%, ZrO2+HfO2 16-24%, MgO в таком количестве, что массовое соотношение (ZrO2+HfO2)/MgO составляет от 25 до 65, оксиды, отличные от Al2O3, ZrO2, HfO2 и MgO 0-2%. Изобретение позволяет получить зерна с улучшенными свойствами при более низком содержании диоксида циркония, а следовательно, снижении себестоимости. 3 н. и 9 з.п. ф-лы, 1 табл.

Изобретение относится к машиностроению и может быть использовано при хонинговании отверстий цилиндрической, конической, некруглой и ступенчатой формы с наличием окон, пазов, шпоночных канавок. Абразивный инструмент содержит корпус и рабочие абразивные элементы, установленные на гибкой основе на периферии корпуса. Рядами на корпусе установлены кольца, которые выполнены на своих торцевых поверхностях с кольцевыми проточками и радиальными пазами. Гибкая основа выполнена в виде упругих гибких связей, а рабочие абразивные элементы выполнены сферическими и установлены рядами посредством неподвижных шариков в упомянутых радиальных пазах и кольцевых проточках колец. Рабочие абразивные элементы в каждом ряду могут быть установлены в шахматном порядке. Расширяются технологические возможности обработки отверстий различной формы, в том числе с наличием радиальных отверстий, окон, шпоночных пазов и ступеней. 1 з.п.ф-лы, 1 пр., 4 ил.
Изобретение относится к твердосмазочным антифрикционным покрытиям на основе неорганического связующего, которое может быть использовано в машиностроении для нанесения на детали узлов трения, работающих в воздушной среде, в условиях высоких нагрузок и температур

Изобретение относится к области машиностроения и металлургии, а именно к вакуумным устройствам для получения покрытий из материалов с эффектом памяти формы на цилиндрической поверхности деталей

Изобретение относится к области машиностроения и металлургии, а именно к вакуумным устройствам для получения покрытий из материалов с эффектом памяти формы на цилиндрической поверхности деталей

Изобретение относится к области восстановления деталей и ремонта агрегатов машин и может быть использовано на ремонтно-технических предприятиях при восстановлении интегральных рулевых механизмов с гидроусилителем руля

Изобретение относится к способам защиты от коррозии морских объектов техники широкого назначения

Изобретение относится к способу нанесения металлического покрытия, а также к элементу конструкции летательного аппарата с упомянутым покрытием
Наверх