Оптический микрофон

Изобретение относится к области приборостроения и может быть использовано в устройствах громкоговорящей и телефонной связи на подвижных объектах для преобразования акустических сигналов в электрические. Оптический микрофон состоит из корпуса, мембраны, закрепленной по его периметру, монохроматического источника света, фокусирующей линзы и фотоприемника. Источник монохроматического излучения и фокусирующая линза установлены напротив первого конца волоконно-оптического световода, а фотоприемник расположен напротив второго конца волоконно-оптического световода. Мембрана микрофона выполнена гофрированной из тонкого слоя нитрида силикона толщиной 0,1 мкм, причем отражение света у нее происходит от центрального участка диаметром 0,4 мм, полученного с помощью нанесения золота фотолитографическим методом. Технический результат - повышение надежности и чувствительности оптического микрофона. 3 ил.

 

Изобретение относится к области приборостроения и может быть использовано в устройствах громкоговорящей и телефонной связи на подвижных объектах для преобразования акустических сигналов в электрические.

Для работы по волоконно-оптическим линиям связи на кораблях, судах и других подвижных объектах необходимо применять элементы, работающие по оптическому кабелю. К таким элементам относятся и оптические микрофоны.

В настоящее время волоконные световоды нашли широкое применение на кораблях, судах и подводных лодках [Катанович А.А., Николшин Ю.Л. Корабельные оптические системы связи. СПб., Судостроение, 2009 г., 239]. Важной проблемой, возникающей при внедрении корабельных оптических систем связи, является преобразование акустических сигналов в электрические. Используемые обычные электроакустические преобразователи - микрофоны типа ДЭМШ в аппаратуре связи корабельных комплексов обладают недостаточной защищенностью от радиопомех.

Оптические микрофоны используют принцип модуляции интенсивности лазерного светового луча: луч света от лазерного источника направляется по оптоволокну и освещает мембрану микрофона. При колебании мембраны световой поток модулируется (по интенсивности) и идет по второму оптоволокну на фотодиод, который преобразует сигнал в переменный ток. При таком принципе не используется преобразование колебаний мембраны непосредственно в электрический сигнал, как в обычных микрофонах. Мембрана может вообще размещаться на расстоянии нескольких десятков метров от источника света и фотодиода из-за низких потерь при передаче сигнала по оптоволокну (потери сигнал/шум составляют меньше 2 дБ на 1 км оптоволокна).

Оптический микрофон не производит никаких электромагнитных излучений (ни за счет капсюля, где в других типах микрофонов обычно размещен предусилитель, ни за счет кабелей) и сам нечувствителен к электромагнитным полям. Из-за малых размеров может быть размещен в любом труднодоступным месте (при этом его сложно обнаружить известными методами) и может работать в сильных магнитных, электрических или радиополях.

Аналогом устройства согласно изобретению является оптоэлектронный микрофон (АС СССР №627599, кл. H04R 23/00, 1979). Микрофон содержит корпус, мембрану, закрепленную по периметру на корпусе микрофона, монохроматический источник света и оптическую систему с фотоприемником для преобразования механических колебаний в электрические.

Прототипом является оптический микрофон по патенту РФ №2047944, кл. 6 Н04R 23/00, 1990. Микрофон содержит корпус, мембрану, закрепленную по периметру корпуса, источник монохроматического излучения, фокусирующую линзу и фотоприемник. Источник монохроматического излучения и фокусирующая линза установлены напротив первого конца волоконно-оптического световода, а фотоприемник расположен напротив второго конца волоконно-оптического световода.

Недостатками как аналога, так и прототипа являются большие потери световой энергии и малый диапазон преобразования акустического сигнала в электрический, невысокая надежность этих устройств при внешних воздействиях (ударах, вибрации и т.п.), при этом самое главное - не обеспечивается стабильность работы микрофона из-за технологических проблем, вызванных прежде всего необходимостью обеспечения стабильности работы микрофона и оптимизации отношения сигнал-шум. Источником шума является, в первую очередь, фотодетектор. Для снижения шума следует увеличить мощность источника света (за счет применения диодных лазеров высокой яркости) и увеличить точность детектирования смещений мембраны (которая выполняет роль отражающего зеркала) при колебаниях. Для этого необходимо разработать мембрану, обладающую высокой чувствительностью и точностью воспроизведения звука.

Цель изобретения - повышение надежности и чувствительности оптического микрофона.

Поставленная цель достигается тем, что оптический микрофон состоит из корпуса, мембраны, закрепленной по его периметру, монохроматического источника света, фокусирующей линзы и фотоприемника, причем источник монохроматического излучения и фокусирующая линза установлены напротив первого конца волоконно-оптического световода, а фотоприемник расположен напротив второго конца волоконно-оптического световода, при этом мембрана выполнена гофрированной из тонкого слоя нитрида силикона толщиной 0,1 мкм, причем отражения света у нее происходят от центрального участка диаметром 0,4 мм, полученного с помощью нанесения золота фотолитографическим методом.

На Фиг.1 показан предлагаемый микрофон; на Фиг.2 - график зависимости луча от расстояния между мембраной и оптоволокном.

Оптический микрофон содержит монохроматический источник 1 света, фокусирующую линзу 2, размещенную напротив входа в волоконно-оптический световод 3, связанный с гофрированной мембраной 4, на которой установлено золоченое кольцо 5, а также фотоприемник 6, расположенный напротив выхода световода 3. Микрофон размещен в корпусе 7, имеющем отверстия, защищенные декоративной сеткой.

Световой пучок от источника 1 света фокусируется линзой 2 и направляется перпендикулярно торцу световода 3 на мембрану 4.

Под воздействием акустических колебаний мембрана 4 начинает изменять свою форму. При колебаниях мембраны, на которой находится золоченое кольцо 5 (активная область мембраны), световой поток модулируется и идет по второму оптоволокну на фотодиод 6, который преобразует сигнал в переменный ток.

Интенсивность модулированного светового луча зависит от геометрии отражающей мембраны, расстояния между концом оптоволокна 3 и поверхностью мембраны 4 и угловой позиции волокна относительно поверхности мембраны. Связь между интенсивностью отраженного светового луча и расстоянием от конца оптоволокна до поверхности мембраны показана на фиг.2. В пределах 30 мкм она растет относительно линейно, затем достигает максимума (в данном примере на расстоянии 50 мкм) и начинает спадать. Для сохранения линейности выбирается расстояние на первом участке порядка 35 мкм.

Относительно важную роль для интенсивности выходного луча играет также выбор углового положения оптоволокна относительно поверхности мембраны. При колебании мембраны происходит боковой сдвиг светового пятна относительно центра принимающего волокна, пропорционально величине этого сдвига уменьшается световая интенсивность в принимающем волокне. Для увеличения точности на оптоволокне от источника используется фокусирующая линза. Угловое расположение волокон (фиг.3) оптимизировано с помощью специальной программы типа ZEMAX.

Оптический лазер и фотодиод микрофона смонтированы на одной стеклянной плате, они отделены друг от друга непрозрачной перегородкой и покрыты сверху эпоксидной резиной. Размер лазера 0,2×2 мм, фотодиода - 0,5×5 мм, общий размер микрофона: диаметр - 0,5 мм, толщина - 1,5 мм.

Таким образом, по сравнению с аналогом и прототипом предложенная конструкция оптического микрофона обеспечивает высокую чувствительность и диапазонные свойства и вместе с тем не требует установки в корпусе дополнительных оптических или механических элементов, что повышает надежность его функционирования.

Оптический микрофон, состоящий из корпуса, мембраны, закрепленной по его периметру, монохроматического источника света, фокусирующей линзы и фотоприемника, причем источник монохроматического излучения и фокусирующая линза установлены напротив первого конца волоконно-оптического световода, а фотоприемник расположен напротив второго конца волоконно-оптического световода, отличающийся тем, что мембрана выполнена гофрированной из тонкого слоя нитрида силикона толщиной 0,1 мкм, при этом отражение света у нее происходит от центрального участка диаметр 0,4 мм, полученного с помощью нанесения золота фотолитографическим методом.



 

Похожие патенты:

Изобретение относится к средствам радиовещания и может быть использовано в качестве цифрового микрофона. .

Изобретение относится к технике преобразования и усиления звуковых сигналов и может быть использовано в технических системах приема и обработки акустической информации.

Изобретение относится к оптико-электронному приборостроению и микротехнологии и может быть использовано в конструкции микроминиатюрных приемников акустических сигналов специального назначения.

Изобретение относится к области акустических измерений. .

Изобретение относится к технической физике и может быть использовано для измерения значений величин, влияющих на результаты гидроакустических измерений. .

Изобретение относится к области воспроизводства звука, используется в аудиосистемах, аудиовидеосистемах, в средствах коммуникации, таких как телефоны, радио и т.д. .

Изобретение относится к преобразователям, предназначенным для получения акустических волн из электрических колебаний и излучения акустической мощности в окружающую среду, более конкретно к громкоговорителям.

Изобретение относится к преобразователям, предназначенным для получения акустических волн из электрических колебаний и излучения акустической мощности в окружающую среду, более конкретно к громкоговорителям.

Изобретение относится к технике преобразования и усиления сигналов и может быть использовано в технических системах приема и обработки информации

Изобретение относится к электроакустике, устройствам воспроизведения звуковых сигналов высоковольтной электрической дугой. Технический результат - повышение точности воспроизведения звуковых сигналов. Достигается тем, что используется более одного повышающего трансформатора, вторичные обмотки которых соединены параллельно и подключены к электродам, между которыми создается высоковольтная электрическая дуга, излучающая звуковые колебания, с помощью усилителя звуковой частоты и коммутатора, поочередно распределяющего выходное напряжение усилителя на первичные обмотки трансформаторов. При этом получают импульсы постоянной частоты и длительности. За время действия импульса в трансформаторе накапливается энергия, пропорциональная выходному напряжению усилителя, которая между импульсами накопления передается в дугу. Импульсы на первичных обмотках трансформаторов равномерно сдвинуты относительно друг друга в пределах одного периода несущей частоты. Имеют временные соотношения накопления и передачи энергии, соответствующие количеству используемых трансформаторов. При этом на электродах дуги осуществляется последовательная, поочередная, амплитудно-импульсная модуляция от каждого трансформатора, увеличивая точность звукового сигнала. 2 ил.

Микрофон // 2524558
Изобретение относится к области акустики и касается ручного сценического микрофона. Микрофон содержит полый корпус, защитную решетку, звукосниматель, диафрагму, звуковую катушку, магнитный элемент, включатель звукоснимателя, выходной разъем. В головной части корпуса со стороны защитной решетки по окружности выполнен светоотражающий канал с V-образными выемками, в каждой из которых расположен, по меньшей мере, один светодиод, способный излучать белый или окрашенный свет. Светодиоды соединены с блоком преобразования звуковых частот голоса в световые излучения и источником постоянного электрического тока. С внешней стороны светоотражающего канала может быть дополнительно установлен белый или окрашенный светофильтр. Технический результат заключается в обеспечении возможности генерации разноокрашенных световых потоков в зависимости от звуковых частот голоса. 7 з.п. ф-лы, 4 ил.

Изобретение относится к акустике и предназначено для возбуждения акустических колебаний в газах и жидкостях. Сущность: излучатель содержит теплопроводящую подложку, на рабочей поверхности которой сформированы параллельно расположенные протяженные структуры в виде выступов призматической формы, имеющие легированные поверхностные слои со значительно большей электрической проводимостью, чем подложка. Протяженные структуры соединены с токопроводящими контактными областями, сформированными на подложке. Поверхности подложки и тепловыделяющих структур покрыты сверху наноразмерным слоем диоксида кремния. Технический результат: повышение надежности, удельной акустической мощности и максимальных частот излучаемых акустических колебаний. 1 ил.

Изобретение относится к акустическим средствам воспроизведения звука. Электродинамическая головка воспроизведения звука содержит источник звуковых электрических сигналов, генератор звуковых колебаний, взаимодействующий с упругой средой, последовательно соединенные модулятор, согласующее устройство и высоковольтный трансформатор. При этом генератор звуковых колебаний выполнен в виде двух электродов, расположенных друг от друга на расстоянии, обеспечивающем формирование электрической дуги. Вход модулятора соединен с выходом источника звуковых электрических сигналов, а выходы высоковольтного трансформатора подключены к электродам, к выходу модулятора подключено согласующее устройство, обеспечивающее согласование по уровню сигнала и сопротивлению с входом высоковольтного трансформатора. Выход согласующего устройства соединен с входом трансформатора. Технический результат - повышение качества звучания. 1 ил.
Наверх