Способ измерения энергетических спектров импульсного гамма-излучения

Изобретение относится к области измерительной техники, а именно к диагностике излучения различных импульсных источников гамма-излучения. Сущность изобретения заключается в том, что способ измерения энергетических спектров импульсного гамма-излучения включает в себя прохождение гамма-излучения через поглощающие фильтры, регистрацию излучения, обработку полученной информации и восстановление энергетического спектра гамма-излучения, при этом регистрацию гамма-излучения осуществляют с помощью гетерогенного сцинтилляционного детектора, в котором излучение регистрируется отдельными для каждого слоя фотоприемниками в токовом режиме в течение длительности гамма-импульса τ с высоким временным разрешением с получением исходной информации для математического восстановления спектра гамма-излучения в момент времени t<τ. Технический результат - получение исходной информации для математического восстановления спектра гамма-излучения в различные моменты времени. 3 ил., 1 табл.

 

Изобретение относится к области измерительной техники, а именно к диагностике излучения различных импульсных источников гамма-излучения.

Широко известны разнообразные способы измерения энергетических спектров излучения стационарных гамма-источников с использованием регистраторов, работающих в режиме одночастичной регистрации: сцинтилляционных детекторов на основе органических и неорганических материалов, газовых ионизационных детекторов и магнитных спектрометров. (Л.С.Горн, Б.И.Хазанов Современные приборы для измерения ионизирующих излучений. М.: Энергоатомиздат, 1989).

Однако эти методы не применимы для измерения энергетических спектров излучения импульсных гамма-источников.

К известным методам измерения энергетического спектра импульсного гамма-излучения относится метод поглощающих фильтров (МПФ) с установленными за ними регистраторами, совместно обеспечивающими существенно различные спектральные зависимости чувствительности для каждого из М (по числу фильтров) каналов регистрации соответствующей измерительной установки.

Наиболее близким и выбранным в качестве прототипа является способ измерения энергетических спектров импульсного гамма-излучения с использованием поглощающих фильтров, описанный в статье Ю.И. Чернухина, В.А.Терехина и С.И.Стрельцова «Гетерогенный сцинтилляционный детектор гамма-излучения» (Атомная энергия, т.101, №2, с.130-135, 2006), включающий прохождение гамма-излучения через поглощающие фильтры, регистрацию его, обработку полученной информации и восстановление энергетического спектра гамма-излучения.

Однако известный способ позволяет измерять только интегральные по времени спектры импульсного гамма-излучения, что связано с применением интегрирующих регистраторов: калориметров или дозиметров.

Заявляемое изобретение направлено на решение задачи по получению достоверной информации о динамике изменения спектров гамма-излучения в течение длительности импульса источника.

Технический результат, который позволяет решить поставленную задачу, заключается в получении исходной информации для математического восстановления спектра гамма-излучения в различные моменты времени за счет регистрации сцинтилляций отдельными для каждого слоя гетерогенного сцинтилляционного детектора (ГСД) фотоприемниками, работающими в токовом режиме в течение длительности гамма-импульса τ.

Это достигается тем, что в способе измерения энергетических спектров импульсного гамма-излучения, включающем прохождение гамма-излучения через поглощающие фильтры, регистрацию его, обработку полученной информации и восстановление энергетического спектра гамма-излучения, согласно изобретению регистрацию гамма-излучения осуществляют с помощью гетерогенного сцинтилляционного детектора, в котором излучение регистрируется отдельными для каждого слоя фотоприемниками в токовом режиме в течение длительности гамма-импульса τ с высоким временным разрешением с получением исходной информации для математического восстановления спектра гамма-излучения в момент времени t<τ.

Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».

Новые признаки способа (осуществление регистрации гамма-излучения с помощью гетерогенного сцинтилляционного детектора, в котором излучение регистрируется отдельными для каждого слоя фотоприемниками в токовом режиме в течение длительности гамма-импульса τ с высоким временным разрешением с получением исходной информации для математического восстановления спектра гамма-излучения в момент времени t<τ) не выявлены в технических решениях аналогичного назначения. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

Предлагаемое изобретение проиллюстрировано следующими чертежами:

на фиг.1 - схема расчетной модели гетерогенного сцинтилляционного детектора ГСД-ФТ1, размеры в см;

на фиг.2 - аппаратурные функции Gi(E), i=1, 2, …9 модели ГСД-ФТ1;

на фиг.3 - исходный и восстановленный спектры потока квантов φk(Е) в числовом эксперименте при трех значениях времен tk и погрешности измерений ε=1%.

Для иллюстрации способа была выбрана модель гетерогенного сцинтилляционного детектора ГСД-ФТ1 (см. фиг.1), содержащая экран Э (А1, ρ=2,7 г/см3) толщиной Δэ=0,05 см, представляющая собой многослойную структуру 1=1, 2, …М с размером входного окна 12×10 см2, состоящую из М=9 конвертирующих свинцовых слоев Ki (Pb, ρ=11,3 г/см3) переменной толщины ΔКi значения которой приведены в таблице 1, в которых поток гамма-квантов φ(E,t) трансформируется в поток быстрых заряженных частиц (электронов и позитронов), и примыкающих к ним тонких сенсорных слоев Ci из сцинтиллирующей пластмассы (СН0,99, ρ=1,05 г/см3) толщиной ΔС=0,5 см; в которых энергия заряженных частиц преобразуется в сцинтилляции, регистрируемые светочувствительными приборами. При такой конфигурации ГСД фильтром гамма-излучения для i-го сенсорного слоя служит совокупность всех других слоев, стоящих перед ним.

Таблица 1
Толщины конвертирующих слоев Ki модели ГСД-ФТ1
i 1 2 3 4 5 6 7 8 9
ΔKi, см 0,05 0,1 0,2 0,3 0,6 1,1 0,7 1,0 1,0

Сенсорные слои в этом детекторе могут быть выполнены в виде пластин из полистиролового сцинтиллятора (ПС) со спектросмещающими волокнами (WLS) для вывода света к фотоприемникам или набраны из сцинтиллирующего полистиролового оптоволокна фирмы BICRON. В качестве фотоприемников могут использоваться любые «быстрые» фотопреобразователи: фотоэлементы (ФЭЛ), фотоэлектронные умножители (ФЭУ) и тому подобные приборы. Связь регистрируемого ими тока с потоком гамма-квантов, падающих на входное окно ГСД, определяется уравнением

где Jik≡Ji(tk)(А) - измеренное значение тока регистратора i-го сенсорного слоя ГСД в момент времени tk;

φk(E)=φ(E,tk) (кв/(см2·МэВ·с)) - плотность потока гамма-квантов с энергией Е [МэВ], падающих на входное окно ГСД с площадью П в момент времени tk;

Emin, Emax - минимальное и максимальное значения энергий гамма-квантов в спектре регистрируемого излучения;

Gi(E) (Кл/кв) - эффективность регистрации гамма-квантов с энергией Е в i-ом сенсорном слое ГСД (аппаратурная функция).

При решении системы уравнений (1) относительно спектральных функций φk(Е) аппаратурные функции Gi(E) считаются известными. В первом приближении они могут быть найдены по соотношению

Здесь: - gi, (E) (МэВ/кв) - поглощенная энергия в i-ом сенсорном слое, нормированная на один квант с энергией Е, падающий на входное окно детектора; для модели ГСД-ФТ1 она определялась методом Монте-Карло по программе MCNP (1σ<1%);

- Pi (фот/МэВ) - сцинтилляционная эффективность (световыход) i-го сенсорного слоя;

- Эi(%) - эффективность передачи света к i-му фоторегистратору;

- Yi (ф.э./фот) - квантовая эффективность фотокатода i-го регистратора (ФЭЛ, ФЭУ);

- Кi - коэффициент умножения i-го фоторегистратора (~1 -для ФЭЛ и ~106-для ФЭУ);

- е0=1,6·10-19 Кл/эл - заряд электрона.

В общем случае параметры Рi, Эi, Yi, Ki могут отличаться для всех каналов регистрации ГСД (i=1, 2,…М), их характерные значения:

Р=104 фот/МэВ, Э=2%, Y≈0,1 ф.э/фот, К=1 (для ФЭЛ), К=106 (для ФЭУ). Полученные по этим данным аппаратурные функции Gi(E) для модели ГСД-ФТ1 в диапазоне Е=(0,1÷5) МэВ приведены на фиг.2.

Восстановление искомого спектра гамма-квантов осуществляется путем решения системы уравнений (1) относительно спектральных функций φk(Е), когда аппаратурные функции Gi(E) и токи регистратора сенсорных слоев ГСД Jik заданы, относится к классу некорректно поставленных задач. Для однозначного выбора решения наряду с положительностью искомой функции φk(Е) используется ее представление в виде В-сплайна

где Bkj(E) - базисные сплайны с конечными носителями минимальной длины (В-сплайны);

ukj≥0 - искомые параметры задачи.

При подстановке (3) в (1) для заданного значения tk задача сводится к решению системы линейных алгебраических уравнений относительно неизвестных коэффициентов ukj.

Проверка предложенного способа проводилась в числовом эксперименте на примере импульса тормозного излучения (ТИ) электронов ускорителя прямого действия ИГУР-3 (В.С.Диянков, В.П.Ковалев, А.И.Кормилицын и др. «Обзор экспериментальных установок ВНИИТФ для радиационных исследований» ФММ, т.81, №2, с.119-123, 1996).

Проведение «числового эксперимента» предполагает решение прямой и обратной задач согласно (1). В прямой задаче определяются зависимости Ji(t) по предварительно найденным спектральным функциям φ(E,t). Обратная задача заключается в решении системы интегральных уравнений (1) относительно функции φ(E,t) по результатам решения прямой задачи Ji(t) с учетом характерных ошибок в определении этих величин в реальных экспериментах

Задача решалась для трех значений времени tk, при k=1,2,3:

t1=2.1 нс: t2=25,9 нс, t3=65,5 нс.

Отсчет времени производили относительно максимума импульса напряжения.

Полученные результаты представлены на фиг.3. Из приведенных на фиг.3 данных видно, что рассматриваемая методика на основе ГСД позволит определить энерго-временные распределения импульсного гамма-излучения установок типа ИГУР-3 с точностью 10÷20% (2σ); для этого точность измерений амплитудных значений токов детектора должна быть не хуже ~1% (2σ).

Таким образом, изложенные сведения доказывают выполнимость при реализации заявленного способа следующей совокупности условий:

- предложенный способ, предназначенный для измерений спектров излучения мощных импульсных гамма-установок обеспечивает: возможность достижения рекордно-высокой чувствительности детектора и, как следствие, высокой устойчивости к внешним помехам; возможность изучения изменяемых в течение импульса спектров гамма-излучения; высокое временное разрешение (Δτ~ 5 нс).

Для заявленного изобретения в том виде, как оно охарактеризовано в формуле изобретения, подтверждена возможность осуществления способа измерения энергетических спектров импульсного излучения и способность обеспечения достижения усматриваемого заявителем технического результата.

Следовательно, заявленное изобретение соответствует условию "промышленная применимость".

Способ измерения энергетических спектров импульсного гамма-излучения, включающий прохождение гамма-излучения через поглощающие фильтры, регистрацию излучения, обработку полученной информации и восстановление энергетического спектра гамма-излучения, отличающийся тем, что регистрацию гамма-излучения осуществляют с помощью гетерогенного сцинтилляционного детектора, в котором излучение регистрируется отдельными для каждого слоя фотоприемниками в токовом режиме в течение длительности гамма-импульса τ с высоким временным разрешением с получением исходной информации для математического восстановления спектра гамма-излучения в момент времени t<τ.



 

Похожие патенты:

Изобретение относится к области медицинской рентгенографии, в частности к детектору для обследования представляющего интерес объекта, к аппарату для обследования, и к способу изготовления такого детектора.

Изобретение относится к области дозиметрии рентгеновского и гамма-излучения с помощью термолюминесцентных детекторов при решении задач персональной дозиметрии, особо при определении дозозатрат персонала рентгеновских кабинетов и обслуживающего персонала мобильных комплексов радиационного контроля, задач радиоэкологического мониторинга в зонах с повышенным радиационным фоном, особо на территориях хвостохранилищ отработанных урановых руд или других радиоактивных материалов и отходов.

Изобретение относится к области создания пластмассовых сцинтилляторов с повышенным средним атомным номером. .

Изобретение относится к области «сцинтилляционная техника», прежде всего к эффективным быстродействующим сцинтилляционным детекторам, предназначенным для регистрации гамма и рентгеновских квантов, в приборах для экспресс-диагностики в медицине, промышленности, космической технике, научных исследованиях.

Изобретение относится к области дозиметрии электронного излучения и может быть пригодно для персональной дозиметрии операторов, обслуживающих комплексы радиационного контроля при мониторинге территорий, акваторий и зон захоронения радиоактивных отходов, а также для лиц, работающих с излучением в медицинских радиологических центрах и в лабораториях ускорительной техники.

Изобретение относится к области регистрации ионизирующих излучений, обнаружения источников излучений различного происхождения, определения направления на них и их идентификации, измерения спектра быстрых нейтронов и обнаружения радиоактивных источников.

Изобретение относится к области дозиметрии нейтронного излучения и может быть пригодно для стационарного контроля плотности потока и флюенсов нейтронов в активной зоне ядерных реакторов, для периодического контроля доз нейтронного облучения реакторных конструкционных материалов, для решения задач радиационного материаловедения, для использования в качестве детекторов сопровождения изделий и предметов медицинского назначения при их стерилизации в ядерном реакторе, а также для высокотемпературных измерений флюенсов нейтронов в сверхглубоких скважинах.

Изобретение относится к области создания сегментированных детекторных модулей, регистрации ионизирующих излучений, может применяться в установках, предназначенных для обнаружения радиоактивных источников, делящихся веществ, в физических исследованиях.

Изобретение относится к области техники обнаружения электромагнитного излучения, а более конкретно к обнаружению гамма-излучения в ходе сканирования с радионуклидной визуализацией

Изобретение относится к области радиационных детекторов и более конкретно - к радиационному детектору, который содержит сцинтиллятор

Изобретение относится к детектору излучения и использованию светоотражающего материала в детекторе излучения

Изобретение относится к области нейтронных детекторов, а именно сцинтилляционных нейтронных детекторов для дозиметрического контроля поверхностного загрязнения персонала, радиационных портальных мониторов и систем контроля радиационной обстановки

Изобретение относится к сцинтилляционной технике, прежде всего к эффективным, быстродействующим сцинтилляционным детекторам. Описан способ получения прозрачной керамики, заключающийся в том, что предварительно в металлический порошкообразный цинк добавляют металлический порошкообразный магний, далее газофазным методом проводят синтез порошка для получения гранул в форме тетраподов и имеющих трехмерную наноструктуру, содержащую оксид магния в количестве 0,5-2,3 мас.%, затем полученную смесь подвергают горячему прессованию при температуре 1100-1200°C и давлении 100-200 МПа. Технический результат - увеличение светового выхода и уменьшение энергетических потерь. 2 ил., 3 пр.

Использование: для регистрации различных видов ионизирующих излучений, в том числе альфа-частиц, в ядерной физике для контроля доз и спектрометрии указанных излучений, в космической технике, медицине, в устройствах, обеспечивающих контроль, в промышленности. Сущность изобретения заключается в получении сцинтилляционного материала, представляющего собой керамику на основе ZnO с содержанием легирующей примеси в виде Се или LiF. Способ получения прозрачной легированной сцинтилляционной ZnO-керамики включает холодное прессование (брикетирование) исходного порошка при давлении 12-25 МПа, обработку брикета в вакууме при температуре 600-800°С и последующее одноосное горячее прессование при температуре 900-1100°С и давлении 100-200 МПа. Исходный материал имеет в основе ZnO, легированный Се в количестве 0,002-0,08 вес.% или LiF в количестве 0,004-0,1 вес.%. Сцинтиллятор включает рабочее тело, выполненное на основе легированной прозрачной ZnO-керамики в форме пластины, одно из оснований которого служит для приема ионизирующего излучения, а другое - для соединения с фотоприемником, при этом рабочее тело обеспечивает время высвечивания быстрой компоненты не более 100 нс. Технический результат: улучшение характеристик по прозрачности и кинетике люминесценции прозрачной сцинтилляционной керамики на основе ZnO. 3 н. и 2 з.п. ф-лы, 4 ил.
Изобретение может быть использовано при детектировании ионизирующего излучения и для создания источников белого света на основе нитридных гетеропереходов. Предложена гибкая (самонесущая) поликарбонатная пленка, наполненная неорганическими люминофорами из твердых растворов алюминатов и силикатов редкоземельных элементов. Пленка формируется методом литья из раствора суспензии поликарбоната и люминофора в хлорированных алифатических растворителях и содержит поликарбонат от 10 до 14% массовых, неорганический люминофор со структурой граната 4-8% массовых, пластификатор на основе акрило-нитрил-стирольной композиции 0,08-0,8%, поверхностно-активное вещество полиоксимоноолеат 0,5-2% и растворитель на основе хлорированных алифатических растворителей из группы метиленхлорида и\или хлороформа, дополняя ее состав до 100%. Изобретение обеспечивает возможность создания полимерной люминесцентной гибкой самонесущей поликарбонатной пленки, пригодной для использования в сцинтилляторах, в которых контактирование осуществляется механическим закреплением, а также в полупроводниковых осветительных структурах, в которых осуществляется адгезионное закрепление пленки, имеющей оптический контакт с гетероструктурой. 5 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к области неразрушающего контроля материалов и изделий радиографическими методами и может быть использовано в производственных и полевых условиях для обнаружения опасных материалов на контрольно-пропускных пунктах, на железнодорожных станциях, в аэропортах, таможенных службах, а также в научных исследованиях. Техническим результатом изобретения является повышение пространственного разрешения экрана-преобразователя до десятков микрометров, не зависящего от длины экрана-преобразователя и энергии излучения, уменьшение вклада в сцинтилляционный сигнал рассеянного излучения и тем самым увеличение контраста радиографического изображения, и одновременно получение изображений в различных участках спектра. Технический результат достигается тем, что в экране-преобразователе однокоординатные сцинтилляционные детекторы последовательно расположены в направлении распространения просвечивающего излучения, перекрывая сечение просвечивающего пучка, выходы однокоординатных сцинтилляционных детекторов объединены на фотоприемном устройстве так, что повторяют форму перекрываемого сечения, соединены последовательно. 5 ил.
Наверх