Способ обнаружения зараженности различных поверхностей токсичными химикатами пассивными инфракрасными спектрометрами дистанционного действия



Способ обнаружения зараженности различных поверхностей токсичными химикатами пассивными инфракрасными спектрометрами дистанционного действия
Способ обнаружения зараженности различных поверхностей токсичными химикатами пассивными инфракрасными спектрометрами дистанционного действия
Способ обнаружения зараженности различных поверхностей токсичными химикатами пассивными инфракрасными спектрометрами дистанционного действия
Способ обнаружения зараженности различных поверхностей токсичными химикатами пассивными инфракрасными спектрометрами дистанционного действия

 


Владельцы патента RU 2474811:

Васюкевич Игорь Геннадьевич (RU)

Изобретение относится к оптическим методам измерения физико-химических характеристик газовых сред. Проводится регистрация в ИК-диапазоне спектров поглощения паров токсичных веществ и их идентификация по максимальному коэффициенту корреляции спектра сигнала с образцовыми спектрами базы данных. Сканирование сигнала осуществляют в оптической насадке, проводящей разогрев индицируемой поверхности, возгонку сорбированного вещества и его концентрацию в узком оптическом тракте, а также дающей большой температурный контраст на трассе наблюдения индицируемого вещества для повышения чувствительности метода обнаружения. Наличие теплового контраста позволяет повысить чувствительность дистанционных приборов химической разведки пассивного типа. 4 ил., 3 табл.

 

Изобретение относится к оптическим методам измерения физико-химических характеристик газовых сред. Техническим результатом является разработка способа обнаружения зараженности различных поверхностей токсичными химикатами (ТХ) пассивными инфракрасными (ИК) спектрометрами дистанционного действия с применением оптической насадки.

В современных условиях идет интенсивное развитие дистанционных средств контроля зараженности парами ТХ атмосферы на основе пассивных инфракрасных спектрометров (М21, JSLSCAD, RAPID, ПХРДД-1(2, 3) и другие). Но вопросы индикации зараженности ТХ различных поверхностей являются до настоящего времени недостаточно решенными.

Для определения зараженности поверхности ТХ используются различные подходы. В одних предполагается отбор пробы с последующим ее анализом в стационарной аналитической лаборатории, в других проводится использование технических устройств для анализа атмосферы по вторичным парам ТХ над зараженной поверхностью с помощью индикаторных трубок или газоанализаторов, работающих на методе спектрометрии ионной подвижности. В случае обнаружения на поверхности подозрительных жидких капель возможно применение для их индикации индикаторных бумажек или элементов. Однако эти подходы обладают рядом существенных недостатков: длительностью времени в проведении анализа, низкой специфичностью, низкой производительностью, потребностью в расходных материалах и так далее.

Одним из наиболее эффективных методов контроля зараженности ТХ различных поверхностей является применение бортового мобильного масс-спектрометра ММ-1 фирмы Брюкер [1]. Прибор предназначен для определения паров ТХ в воздухе и на различных поверхностях в жидкой фазе. Унифицированная изолированная система отбора проб обеспечивает проведение анализа как на месте, так и в движении. Система полностью управляется бортовым компьютером, база данных содержит информацию о 150 соединениях. Чувствительность определения находится на уровне 10 мг/м2 по поверхностному заражению. Однако и этот метод имеет свои недостатки, связанные со сложностью пробоотбора, невозможностью проведения анализа с впитавшей капли ТХ поверхности, длительностью анализа.

В настоящее время как у нас в стране, так и за рубежом наиболее перспективным дистанционным методом контроля загрязнений атмосферы ТХ является пассивная ИК-спектрометрия. Классическое их предназначение - обнаружение паров ТХ в атмосфере [2].

Следует отметить, что физические принципы, заложенные в основу принципа действия пассивных ИК-спектрометров, алгоритмы регистрации и обработки спектральной информации ориентированы на работу в условиях приземных наклонных трасс и незначительных температурных контрастов.

Как видно из (см. фиг.1), спектральная мощность энергетической яркости излучения, регистрируемого прибором Ввх(ν, β, ΔТ), состоит из трех компонентов:

- яркость фонового излучения атмосферы Вф(ν, β, Тф), где β - угол места локации, ослабленного, согласно закону Бугера-Ламберта, в облаке со спектральным пропусканием τ(ν) и на атмосферной трассе наблюдения с пропусканием τа(ν);

- излучение облака, равное, по закону Кирхгофа, BAЧT(ν, Ta)(1-τ(ν)), ослабленное на той же трассе;

- собственное излучение трассы ВАЧТ(ν, Та)(1-τа(ν)).

То есть

Bвх(ν, β, ΔT)=Вф(ν, β, Тф)τ(ν)τa(ν)+ВАЧТ(ν, Та)(1-τ(ν)) τa(ν)+ВАЧТ(ν, Та)(1-τа(ν))

Это определяет способность таких приборов регистрировать и идентифицировать загрязняющие приземную атмосферу вещества, находящиеся в парогазовом состоянии.

Наиболее близким по технической сущности к заявляемому способу является способ, реализованный в Фурье-спектрометре с охлаждаемым ИК-приемным каналом и разработанный под руководством А.Н.Морозова авторским коллективом ЦПФ МГТУ им. Н.Э.Баумана в 2004 под названием ПХРДД-2 [2]. Прибор обладает большой светосилой, позволяет одновременно регистрировать протяженные участки оптического спектра за короткое время и обеспечивает возможность ведения одновременной индикации достаточно широкого перечня токсичных веществ и определения смесей веществ с оценкой концентрации каждого компонента в паровой фазе на значительных расстояниях при наличии малых тепловых контрастов (около 2°С).

Быстродействие прибора не более 1 с обеспечивает своевременное обнаружение объектов индикации.

Чувствительность прибора, в главной степени, зависит от чувствительности ИК-приемной системы и составляет для паров ТХ при интегральной плотности паров в облаке не менее 50 мг/м2. На чувствительность системы также будут оказывать влияние степень заполнения облаком паров индицируемого вещества поля зрения, концентрация паров, уровень теплового контраста.

В 2009 году ими же разработан прибор ПХРДД-3 с неохлаждаемым ИК-приеником. Данный прибор является аналогом ПХРДД-2 с уменьшенными массой, габаритными размерами и энергопотреблением, что позволило образец сделать в носимом варианте.

Нами разработан способ обнаружения зараженных поверхностей ТХ на основе применения насадки и прибора ПХРДД-2(3), наряду с решением их традиционных задач.

Насадка представляет собой фиксированную в ИК-канале прибора трубку с раструбом (см. фиг.2) и нагревательным элементом на конце трубки (см. фиг.3).

Наличие трубки позволяет концентрировать возгоняемое вещество в узком объеме поля зрения прибора. Диаметр трубки определяется диаметром поля зрения прибора, а длина трубки - удобством эксплуатации устройства. Раструб на конце трубки позволяет с большей площади поверхности проводить возгонку вещества и концентрировать его в трубке, изолировать от окружающей атмосферы возгоняемые пары, а также избегать возможности прямого контакта нагревательного элемента с анализируемой поверхностью.

Нагревательный элемент может нагреваться до температур, при которых не происходит разложение анализируемого вещества. В нашем случае он нагревался до температуры около 150°С напряжением 12 В, не касаясь поверхности на расстоянии 3-5 мм. Нагревательный элемент выполняет две функции:

- разогревает индицируемую поверхность и таким образом возгоняет сорбированное вещество;

- служит большим температурным контрастом для возможности обнаружения на трассе наблюдения индицируемого вещества.

Наличие такого теплового контраста позволяет значительно повысить чувствительность дистанционных приборов химической разведки пассивного типа в сравнении с чувствительностью прибора при работе с использованием естественного теплового контраста.

Для апробирования способа нами была разработана экспериментальная установка (см. фиг.4), представляющая собой прибор ПХРДД-2, соединенный и съюстированный с оптической насадкой.

Экспериментальную оценку способа мы проводили на различных поверхностях: песчаный грунт, деревянная поверхность (фанера), обмундирование. Эксперимент проводили с использованием веществ, имеющихся в базе данных прибора ПХРДД-2: ацетон, этанол, изопропанол. База данных может пополняться.

На индицируемую поверхность наносились с помощью медицинского шприца три капли индицируемого вещества весом около 20 мг на площадь 20 см2. Выдерживалось около 5 мин и проводилось зондирование зараженной поверхности с помощью прибора ПХРДД-2. Для соблюдения условий юстировки прибор и раструб находились в фиксированном положении в штативах, а индицируемая поверхность подводилась к раструбу с нагревательным элементом.

Результаты экспериментов представлены в таблицах 1-3.

Таблица 1
Обмундирование
Вещество Плотность концентрации, мг/м2 Коэффициент корреляции Среднеквадратическое отклонение
Этанол 3766 0,85 ±181
3400
3540
3369
Изопропанол 1388 0,88 ±65
1429
1539
1475
Ацетон 1171 0,90 ±62
1313
1240
1195
Таблица 2
Дерево
Вещество Плотность концентрации, мг/м2 Коэффициент корреляции Среднеквадратическое отклонение
Этанол 2188 0,85 ±312
2859
2831
2569
Изопропанол 440 0,88 ±58
564
444
477
Ацетон 1135 0,90 ±72
1129
1285
1194
Таблица 3
Песчаный грунт
Вещество Плотность концентрации, мг/м2 Коэффициент корреляции Среднеквадратическое отклонение
Этанол 2336 0,86 ±142
2647
2452
2357
Изопропанол 889 0,88 ±92
869
689
773
Ацетон 2762 0,89 ±533
3929
3387
2854

Литература

1. Сивцов Г.А., Кауров Н.Е., Политов Ю.Н., Таранченко В.Ф., Цехмистер В.И. Система технических средств химической разведки и химического контроля армий стран НАТО. - М.: ВУРХБЗ, 2003, 120 с.

2. Морозов А.Н. Основы фурье-спектрорадиометрии / Под ред. Васильева Г.К. - М.: Наука, 2006, 275 с.

Способ обнаружения зараженности различных поверхностей токсичными химикатами пассивными инфракрасными спектрометрами дистанционного действия с применением оптической насадки, заключающийся в регистрации в ИК диапазоне спектров поглощения паров токсичных веществ, их идентификацию по максимальному коэффициенту корреляции спектра сигнала с образцовыми спектрами базы данных, отличающийся тем, что с помощью нагревательного элемента, служащего большим температурным контрастом и размещенного на конце трубки оптической насадки, проводят возгонку сорбированного вещества и его концентрирование в узком оптическом тракте, а затем осуществляют сканирование сигнала.



 

Похожие патенты:

Изобретение относится к стандартизации льняного сырья и может быть использовано на предприятиях первичной обработки льна для определения отделяемости льняной тресты.

Изобретение относится к аграрным технологиям и может быть использовано в мелиорации для контролируемого и оптимального орошения растений независимо от типа почв как в полевых условиях, так и в теплицах.

Изобретение относится к измерительной технике, а именно к приборам контроля содержания углеводородов в атмосфере. .

Изобретение относится к усовершенствованному способу получения уксусной кислоты, который включает следующие стадии: (а) карбонилирование метанола и/или его реакционноспособного производного моноксидом углерода в первой реакционной зоне, включающей жидкую реакционную смесь, содержащую катализатор карбонилирования и промоторный металл для катализатора карбонилирования, метилиодид, метилацетат, уксусную кислоту и необязательно воду, где в жидкой реакционной смеси находятся в равновесии по меньшей мере первый растворимый каталитический материал с промоторным металлом и второй растворимый каталитический материал с промоторным металлом, причем среди материалов, находящихся в равновесии, первый каталитический материал с промоторным металлом является наименее промоторно активным; (б) отвод из упомянутой первой реакционной зоны жидкой реакционной смеси совместно с растворенными и/или захваченными моноксидом углерода и другими газами; (в) необязательное пропускание упомянутой отводимой жидкой реакционной смеси через одну или несколько последующих реакционных зон для израсходования по меньшей мере части растворенного и/или захваченного моноксида углерода; (г) направление упомянутой жидкой реакционной смеси со стадии (б) и необязательной стадии (в) на одну или несколько стадий разделения однократным равновесным испарением с получением паровой фракции, которая включает способные конденсироваться компоненты и отходящий газ низкого давления, причем способные конденсироваться компоненты содержат получаемую уксусную кислоту, метилиодид, метилацетат и необязательную воду, а отходящий газ низкого давления содержит моноксид углерода и другие газы, растворенные и/или захваченные отводимой жидкой реакционной смесью; и жидкой фракции, которая включает катализатор карбонилирования, промоторный металл для катализатора карбонилирования и уксусную кислоту как растворитель; (д) возврат жидкой фракции со стадии разделения однократным равновесным испарением в первую реакционную зону; (е) определение (I) концентрации первого каталитического материала с промоторным металлом и/или (II) отношения концентрации первого каталитического материала с промоторным металлом к концентрации второго каталитического материала с промоторным металлом, находящихся в равновесии между собой, содержащихся в жидкой реакционной смеси на любой из стадий с (а) по (г) и/или присутствующих в жидкой фракции на стадии (д); и (ж) поддержание (I) и/или (II) ниже предопределенного значения.

Изобретение относится к оптическим методам исследования тонких слоев на поверхности металлов и полупроводников, а именно к инфракрасной (ИК) спектроскопии диэлектрической проницаемости.

Изобретение относится к области экологии, в частности к дистанционным методам мониторинга природных сред. .

Изобретение относится к анализу качества молока и молочного напитка, в частности для определения качества молока одновременно по нескольким показателям, среди которых жир, белок, казеин, сухой обезжиренный молочный остаток, вода, лактоза.

Изобретение относится к количественному анализу растворов и дисперсий для фармацевтических целей с помощью ближней инфракрасной спектроскопии. .

Портал // 2484449
Изобретение относится к средствам обеспечения безопасности, например, в аэропортах

Изобретение относится к измерительной технике, а именно к количественному газовому анализу токсичных веществ по инфракрасным спектрам поглощения

Изобретение относится к управлению технологическим процессом паровой конверсии

Изобретение относится к газовым датчикам, в частности для измерения СО в ИК диапазоне. Датчик снабжен фильтрующим устройством, за которым размещено детекторное устройство, к которому подключено устройство оценки. Фильтрующее устройство содержит по меньшей мере первый фильтр, а именно проверочный фильтр, выполненный в виде полосового фильтра, пропускающего первую заданную полосу, а именно проверочную полосу, и по меньшей мере один второй фильтр, а именно по меньшей мере один эталонный фильтр, выполненный в виде полосового фильтра, пропускающего по меньшей мере одну вторую заданную полосу, а именно по меньшей мере одну эталонную полосу (ЭП1 и ЭП2), причем указанное детекторное устройство содержит по меньшей мере один детектор, связанный по меньшей мере с одним из фильтров. Полосы пропускания эталонных фильтров распределены выше и ниже полосы пропускания проверочного фильтра. Изобретение обеспечивает упрощение использования датчика. 2 н. и 12 з.п. ф-лы, 6 ил.

Изобретение относится к области фармакологии и медицины, в частности к методам экспресс-анализа с определением подлинности лекарственного сырья методом Фурье-ИК спектроскопии. Способ включает отбор лекарственных растений, измельчение, исследование образцов лекарственного растительного сырья, причем измельчение лекарственного растительного сырья производится до 0,2÷0,5 мм. Полученный образец помещают в приставку НПВО и снимают ИК-спектр на Фурье-ИК спектрометре, идентифицируют значения характеристических частот ИК-спектра, соответствующих химическому составу образца, и определяют подлинность лекарственного растительного сырья по табличным спектральным данным для эталонных образцов лекарственного сырья. По наличию функциональных групп в образце, не свойственных химическому составу лекарственных растений и появившихся в результате антропогенного загрязнения, определяют безопасность и качество лекарственного растительного сырья. Изобретение позволяет повысить эффективность контроля. 2 ил., 1 табл.

Изобретение относится к анализу свойств свертывания молока и заключается в способе сортировки молока в режиме онлайн на основании прогнозируемых свойств коагуляции. Способ включает отбор проб сырого молока из молочной линии от поста дойки до пункта сбора, выполнение спектрального анализа пробы сырого молока, прогнозирование по меньшей мере одного параметра коагуляции в режиме онлайн на основании спектрального анализа и направление молока во время протекания по молочной линии в одно из нескольких мест на основании по меньшей мере одного параметра коагуляции. Способ позволяет улучшить сортировку молока, облегчает сортировку молока в режиме онлайн, улучшает частоту разделения молока, повышает экономическую ценность среднего молока от стада. 3 н. и 20 з.п.ф-лы, 9 ил.

Изобретение относится к области химического анализа и может быть использовано для контроля процесса алкилирования нефтепродуктов. Согласно заявленному изобретению обеспечивают способ и оборудование для определения концентрации по меньшей мере одного компонента в кислотном катализаторе для конверсии углеводородов, содержащем неизвестную концентрацию кислоты, растворимого в кислоте масла (ASO) и воды. Прибор, сконфигурированный для измерения свойства кислотного катализатора, имеет отклики на концентрации одного из кислоты, ASO и воды, по существу независящие от концентраций остальных: кислотного катализатора, ASO и воды. Температурный датчик конфигурируют для генерирования температурных данных кислотного катализатора. Процессор конфигурируют для сбора данных, генерированных температурным датчиком и прибором, и для применения данных в сочетании с моделью для определения концентрации с температурной компенсацией одного из кислоты, ASO и воды. Произвольно, один или несколько других приборов, сконфигурированных для измерения других свойств жидкостной смеси, также могут быть применены. Технический результат: повышение точности данных анализа. 4 н. и 28 з.п. ф-лы, 9 ил., 4 табл.

Изобретение относится к медицинской технике, а именно к средствам для оптического обнаружения состояния суставов. Способ заключается в облучении светом части тела, содержащей сустав, и детектирования локального ослабления света частью тела в месте расположения сустава и на еще одном участке части тела. При измерении ослабления временно блокируют кровоток в указанных частях и открывают снова. Индивидуальные измерения локального ослабления для сустава и другой части тела осуществляют до, во время и после блокирования кровотока. Устройство содержит измерительный модуль, модуль блокирования кровотока и блок управления устройством. Использование изобретения позволяет выявить заболевания суставов на ранних стадиях. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к прогнозированию устойчивости технологического потока углеводородов. Способ включает получение проб из одного или более технологических потоков и измерение фактической устойчивости и оптической плотности указанных проб в ближней инфракрасной области спектра. Вначале разрабатывают модель классификации для идентификации подгрупп проб и создают корреляционную модель на основе данных устойчивости и оптической плотности путем включения этих данных в математическую функцию. Затем проводят измерения в технологическом потоке углеводородов в режиме он-лайн или офф-лайн. На первом этапе используют модель классификации для идентификации подгруппы, а затем применяют соответствующую корреляционную модель для прогнозирования устойчивости потока. Изобретение обеспечивает быстрое и эффективное определение устойчивости технологического потока при частых изменениях типа загрузки. 3 н. и 12 з.п. ф-лы, 6 ил., 1 табл.
Наверх