Способ определения хлорзамещенных фенолов в водных средах



Способ определения хлорзамещенных фенолов в водных средах
Способ определения хлорзамещенных фенолов в водных средах

 


Владельцы патента RU 2475737:

Федеральное государственное бюджетное учреждение науки Институт биологии Коми научного центра Уральского отделения Российской академии наук (ИБ Коми НЦ УрО РАН) (RU)

Настоящее изобретение относится к аналитической химии органических соединений и описывает способ определения хлорзамещенных фенолов в водных средах, включающий их химическую модификацию, экстракционное концентрирование и газохроматографическое детектирование, где на стадии химической модификации в качестве реагента-модификатора применяют йод в количестве 0.01-0.03% в присутствии бета-аланина и аммиака в количестве 0.5-2.0% и 0.005-0.02% от массы водной пробы соответственно. Изобретение обеспечивает более низкий предел обнаружения хлорзамещенных фенолов в воде. 2 табл., 2 ил., 7 пр.

 

Изобретение относится к аналитической химии органических соединений (концентрирование и определение) и может быть использовано для санитарно-эпидемиологического контроля питьевых вод, воды объектов, имеющих рыбохозяйственное значение, а также степени очистки сточных вод различных химических производств.

Наиболее близким по технической сущности к заявляемому решению является газохроматографический способ определения монохлорфенолов в виде их бромпроизводных [Патент Россия №2142627, МПК 6 G01N 30/00, 31/00, 33/18. Способ определения монохлорфенолов в водных средах / Я.И.Коренман, И.В.Груздев, В.Н.Фокин, Б.М.Кондратенок (Россия). - 99101425/04; Заявлено 26.01.99; Опубл. 10.12.99, Бюл. №34 (ч. II) // Изобретения. - 1999. - №34(ч.II). - С.316.].

Недостатком прототипа является высокий предел обнаружения хлорзамещенных фенолов, связанный с малоэффективным экстракционным концентрированием и частичным окислением хлорфенолов при получении их бромпроизводных в водной среде.

Задачей изобретения является разработка способа, позволяющего снизить предел обнаружения хлорфенолов (2-хлорфенол, 4-хлорфенол, 2,4-дихлорфенол и 2,6-дихлорфенол) за счет применения более эффективного модифицирующего реагента и исключения окисления получаемых производных. В этом состоит технический результат.

Решение поставленной задачи достигается тем, что в способе определения хлорзамещенных фенолов в водных средах, включающем их химическую модификацию, экстракционное концентрирование и газохроматографическое детектирование, новым является то, что в качестве реагента-модификатора применяют йод в количестве 0.01-0.03% в присутствии бета-аланина в количестве 0.5-2.0% и аммиака в количестве 0.005-0.02% от массы водной пробы.

Положительный эффект по предлагаемому способу достигается за счет того, что применяемый реагент-модификатор (йод) при взаимодействии с хлорфенолами в водной среде образует соответствующие йодпроизводные хлорфенолов. Как известно, атомы йода имеют больший радиус, чем атомы брома, и, как следствие, большую площадь захвата электронов при детектировании электронозахватным детектором [Poole C.F., Zlatkis A. Electron capture. Journal of Chromatography library. New York: Elsevier, 1981. 322 p.]. Таким образом, пределы обнаружения хлорзамещенных фенолов при определении их в виде йодпроизводных будут ниже, чем при определении их в виде аналогичных бромпроизводных.

Кроме того, йодпроизводные хлорфенолов по сравнению с аналогичными бромпроизводными эффективней экстрагируются, так как атомы йода обладают большим гидрофобным действием [Коренман И.М. Экстракция органических веществ. Горький: Изд-во Горьков. гос. ун-та, 1973. 158 с]. Увеличение степени извлечения йодпроизводных при экстракционном концентрировании (до 80-92% при r=500), также снижает пределы обнаружения хлорфенолов в воде.

Применение молекулярного йода в качестве модифицирующего реагента повышает и устойчивость к окислению как исходных хлорфенолов, так и их йодпроизводных, поскольку водные растворы йода характеризуются в два раза меньшим окислительно-восстановительным потенциалом по сравнению с бромом [Ксензенко В.И., Стасиневич Д.С. Химия и технология брома, йода и их соединений. М.: Химия, 1995. 432 с].

Проведение йодирования хлорфенолов в присутствии бета-аланина связано с наличием сольватационного взаимодействия между йодом и NH2-группой аминокислоты, которое вызывает поляризацию молекул йода и ускорение реакции йодирования хлорфенолов. Следует отметить, что в присутствии других аминокислот (глицин, альфа-аланин) этот эффект выражен слабо, что связано, на наш взгляд, со стерическими препятствиями, возникающими при взаимодействии крупных молекул йода и аминогруппы в альфа-положении.

Наличие аммиака при йодировании хлорфенолов, который обратимо реагирует с йодом,

I2+NH3NH2I+H++I-

позволяет поддерживать постоянную концентрацию йода в системе и дополнительно снижать ее окислительно-восстановительный потенциал. Кроме того, введение аммиака вызывает смещение реакционной среды в слабощелочную область, что сопровождается переходом хлорфенолов в фенолят-анионы и повышением их активности в реакциях галогенирования [Агрономов А.Е. Избранные главы органической химии. М: Химия, 1990. 560 с.].

Йодирование в этих условиях завершается за 8-10 мин с количественным образованием йодпроизводных хлорфенолов, а получаемые йодпроизводные устойчивы в воде и органических растворителях, по крайней мере, в течение 24 часов.

Способ определения хлорзамещенных фенолов в водных средах включает три этапа:

1. Получение йодпроизводных хлорфенолов (химическая модификация) - обработка водного образца молекулярным йодом в присутствии бета-аланина и аммиака. При йодировании атомы йода замещают атомы водорода в ароматическом ядре хлорфенолов в положениях 2, 4 и 6, если они не заняты атомами хлора. Таким образом, 2- и 4-хлорфенолы образуют дийодпроизводные, 2,4- и 2,6-дихлорфенолы - монойодпроизводные. На рис.1 приведена реакция образования йодпроизводного 4-хлорфенола.

2. Экстракционное концентрирование йодпроизводных хлорфенолов методом жидкостной экстракции. Эта стадия предназначена для перевода йодпроизводных из воды в более удобную для последующего газохроматографического анализа органическую фазу (толуол), повышения их концентрации в экстракте и отделения мешающих примесей.

3. Анализ йодпроизводных хлорзамещенных фенолов методом капиллярной газовой хроматографии с галогенселективным электронно-захватным детектором (ДЭЗ).

Для улучшения хроматографических свойств йодпроизводных хлорфенолов (форма пика) в экстракте может быть проведено получение их производных по гидроксильной группе (ацилирование, силирование и др.)

Определение хлорфенолов выполняют по следующей методике. В мерную колбу помещают 1000 см3 анализируемой пробы, добавляют бета-аланин в количестве 0.5-2.0% и аммиак в количестве 0.005-0.02% от массы образца. Исходную пробу делят на две равные части, в одну из которых вводят стандартные добавки хлорфенолов; расчетная концентрация индивидуальных хлорфенолов составляет 0.01 мкг/дм3. В обе части пробы добавляют йодную воду; расчетное содержание молекулярного йода в пробе 0.01-0.03%. Йодирование проводят в течение 10 минут при комнатной температуре. После завершения йодирования избыток йода удаляют раствором тиосульфата натрия; расчетная концентрация в пробе - 0.001 моль/дм3. Далее подкисляют водные растворы до значения рН 2-3 раствором серной кислоты, вводят внутренний стандарт (4,6-дибром-1,2-диметоксибензол); расчетная концентрация в пробе - 0.5 мкг/см3 и экстрагируют образовавшиеся йодпроизводные 1 см3 толуола в течение 12 минут на магнитной мешалке. После расслаивания фаз полученные экстракты анализируют на газовом хроматографе с ДЭЗ.

Условия газохроматографического определения: кварцевая капиллярная колонка 30 м × 0.25 мм × 0.25 мкм с неподвижной жидкой фазой SE-30, SE-52, SE-54 или их аналогами; газ-носитель - азот (ос.ч.), программирование давления газа-носителя: 100 кПа (5 мин) - 20 кПа/мин - 240 кПа, поддув детектора - 25 см3/мин, деление потока - 1:25. Температура детектора 300°С, испарителя 340°С, термостата колонок 190°С.

На рис.2 приведена хроматограмма стандартного раствора хлорфенолов с концентрацией 1 мкг/дм3: 1 - 6-йод-2,4-дихлорфенол, 2 - 4-йод-2,6-дихлорфенол, 3 - внутренний стандарт, 4 - 2,6-дийод-4-хлорфенол, 5 - 4,6-дийод-2-хлорфенол.

Идентификацию йодпроизводных хлорфенолов проводят по относительным временам удерживания (t*):

t*=t/tст,

где t и tст - исправленные времена удерживания компонентов анализируемой пробы и внутреннего стандарта (4,6-дибром-1,2-диметоксибензол), соответственно.

Относительные времена удерживания компонентов анализируемой пробы сравнивают с относительными временами удерживания йодпроизводных хлорфенолов, полученных для стандартной смеси (табл.1).

Таблица 1
Относительные времена удерживания
Вещество t*
6-йод-2,4-дихлорфенол 0.904
4-йод-2,6-дихлорфенол 0.956
внутренний стандарт 1.000
2,6-дийод-4-хлорфенол 1.738
4,6-дийод-2-хлорфенол 1.805

Концентрации хлорфенолов в пробе воды рассчитывают по уравнению [Новак Й. Количественный анализ методом газовой хроматографии. - М.: Мир, 1978. - 179 с.]:

где Cs - концентрация определяемого хлорфенола в растворе стандартной добавки, мкг/см3;

Vs - объем вводимого раствора стандартной добавки, см3;

Vi - объем анализируемой пробы, в который вводится добавка, см3;

, - площади пиков определяемого йодпроизводного хлорфенола и внутреннего стандарта соответственно на хроматограмме пробы с добавкой;

Si, Sv - площади пиков определяемого йодпроизводного хлорфенола и внутреннего стандарта соответственно на хроматограмме пробы без добавки.

Примеры осуществления способа

Пример 1

В мерную колбу помещают 1000 см3 анализируемой пробы, добавляют бета-аланин в количестве 0.2% и аммиак в количестве 0.0005% от массы образца. Исходную пробу делят на две равные части, в одну из которых вводят стандартные добавки хлорфенолов; расчетная концентрация индивидуальных хлорфенолов составляет 0.01 мкг/дм3. В обе части пробы добавляют йодную воду; расчетное содержание молекулярного йода в пробе 0.005%. Йодирование проводят в течение 10 минут при комнатной температуре. После завершения йодирования избыток йода удаляют раствором тиосульфата натрия; расчетная концентрация в пробе - 0.001 моль/дм3. Далее подкисляют водные растворы до значения рН 2-3 раствором серной кислоты, вводят внутренний стандарт (4,6-дибром-1,2-диметоксибензол); расчетная концентрация в пробе - 0.5 мкг/см3 и экстрагируют образовавшиеся йодпроизводные 1 см3 толуола в течение 12 минут на магнитной мешалке. После расслаивания фаз полученные экстракты анализируют на газовом хроматографе с ДЭЗ. На полученных хроматограммах проводят идентификацию и количественное определение хлорированных фенолов.

Способ неосуществим, поскольку предел обнаружения хлорфенолов выше, чем по прототипу.

Пример 2

Содержание бета-аланина в пробе - 0.4%, аммиака - 0.002% и йода - 0.01%. Анализируют, как указано в примере 1. Предел обнаружения - 0.2 мкг/дм3. Способ неосуществим, так как предел обнаружения хлорфенолов выше, чем по прототипу.

Пример 3

Содержание бета-аланина в пробе - 0.5%, аммиака - 0.005% и йода - 0.02%. Анализируют, как указано в примере 1. Предел обнаружения - 0.002 мкг/дм3. Способ осуществим.

Пример 4

Содержание бета-аланина в пробе - 1%, аммиака - 0.01% и йода - 0.02%. Анализируют, как указано в примере 1. Предел обнаружения - 0.002 мкг/дм3. Способ осуществим.

Пример 5

Содержание бета-аланина в пробе - 2%, аммиака - 0.02% и йода - 0.03%. Анализируют, как указано в примере 1. Предел обнаружения - 0.002 мкг/дм3. Способ осуществим.

Пример 6

Содержание бета-аланина в пробе - 3%, аммиака - 0.03% и йода - 0.03%. Анализируют, как указано в примере 1. Предел обнаружения - 0.002 мкг/дм3. Способ осуществим.

Пример 7

Содержание бета-аланина в пробе - 4%, аммиака - 0.04% и йода - 0.05%. Анализируют, как указано в примере 1. Предел обнаружения - 0.01 мкг/дм3. Способ осуществим.

Результаты определения хлорированных фенолов в воде предлагаемым способом приведены в табл.2.

Таблица 2
Примеры осуществления способа
№ примера Содержание NH3,% Содержание бета-аланин, % Содержание I2, % Предел обнаружения, мкг/дм3 Возможность осуществления заявляемого способа
По прототипу - - - 0.1 -
1 0.0005 0.2 0.005 1 неосуществим
2 0.002 0.4 0.01 0.2 неосуществим
3 0.005 0.5 0.02 0.01 осуществим
4 0.01 1.0 0.02 0.01 осуществим
5 0.02 2.0 0.03 0.01 осуществим
6 0.03 3.0 0.03 0.01 осуществим
7 0.04 4.0 0.05 0.01 осуществим

Из примеров 1-7 и табл.2 следует, что предлагаемый способ определения хлорфенолов осуществим при содержании бета-аланина 0.5-2.0%, аммиака 0.005-0.02% и йода 0.01-0.03% по отношению к массе пробы. Дальнейшее увеличение концентрации компонентов нецелесообразно, поскольку не оказывает влияния на предел обнаружения хлорфенолов и ведет к перерасходу веществ. В примерах 1 и 2 заявляемый предел обнаружения не достигается, поскольку йодпроизводные хлорфенолов при этих условиях образуются с полуколичественным выходом.

По сравнению с прототипом предлагаемое техническое решение имеет следующие преимущества:

1. Более низкий предел обнаружения хлорфенолов в воде: 0.01 мкг/дм3; по прототипу - 0.1 мкг/дм3.

2. Достигается полное разделение изомерных йодпроизводных хлорфенолов (рис.2), поскольку они сильнее различаются хроматографическими свойствами, чем аналогичные бромпроизводные. При бромировании хлорфенолов степень разделения изомеров составляет 80-85%, что осложняет проведение их количественного анализа.

3. Применяемый модифицирующий агент (йод) менее токсичен, более доступен и устойчив при хранении.

Способ определения хлорзамещенных фенолов в водных средах, включающий их химическую модификацию, экстракционное концентрирование и газохроматографическое детектирование, отличающийся тем, что на стадии химической модификации в качестве реагента-модификатора применяют йод в количестве 0,01-0,03% в присутствии бета-аланина и аммиака в количестве 0,5-2,0% и 0,005-0,02% от массы водной пробы соответственно.



 

Похожие патенты:

Изобретение относится к области анализа небиологических материалов физическими и химическими методами и может быть использовано при решении задач экологического мониторинга на объектах хранения и уничтожения химического оружия на бывших предприятиях по производству отравляющих веществ.

Изобретение относится к устройствам мониторинга и очистки акваторий от различных загрязнений. .
Изобретение относится к области охраны окружающей среды. .

Изобретение относится к области охраны окружающей среды, в частности к средствам экологического мониторинга окружающей среды с помощью дистанционного неинвазивного контроля в реальном масштабе времени функционального состояния животных, и преимущественно может быть использовано для автоматической оперативной оценки качества таких компонентов окружающей среды, как вода, донные отложения, воздух и почва.

Изобретение относится к анализу вод разного типа. .

Изобретение относится к аналитической химии органических соединений и может быть использовано для санитарно-эпидемиологического контроля водных сред. .

Изобретение относится к аналитической химии органических соединений и может быть использовано для определения хлоранилинов в водных средах. .

Изобретение относится к способу оценки изменений структурного состояния воды путем ее исследования до и после обработки физическим фактором и может быть использовано в медицине при санитарно-гигиеническом анализе.

Изобретение относится к аналитической химии органических соединений и может быть использовано для санитарно-эпидемиологического контроля водных сред. .

Изобретение относится к области аналитической химии и может быть использовано для анализа и распознавания органических соединений. .

Изобретение относится к области газового анализа и может быть использовано для распознавания паров органических соединений в воздухе. .

Изобретение относится к области высокоэффективной жидкостной хроматографии. .

Изобретение относится к области электронной техники и приборостроения, в частности, к способам детектирования и анализа органических соединений в составе воздуха атмосферного давления с использованием явления селективной поверхностной ионизации органических молекул на нагретой поверхности термоэмиттера ионов.

Изобретение относится к области электронной техники и приборостроения, в частности к способам контроля термоэмиссионного состояния поверхностно-ионизационных термоэмиттеров ионов органических соединений, используемых для селективной ионизации молекул органических соединений в условиях атмосферы воздуха в газоанализаторах типа хроматографов и дрейф-спектрометров.

Изобретение относится к области аналитического приборостроения и, в частности, к конструкциям детектора для газовых хроматографов. .
Изобретение относится к газовому анализу, предназначено для регистрации следовых количеств труднолетучих аминов в различных средах и может быть использовано для решения задач охраны окружающей среды, санитарно-гигиенического контроля и т.

Изобретение относится к области электронной техники и приборостроения, в частности к устройствам для детектирования и анализа органических соединений в составе воздуха атмосферного давления с использованием явления селективной поверхностной ионизации органических молекул на нагретой поверхности термоэмиттера ионов. Термоэмиттер ионов органических соединений выполняют из монокристалла оксидной бронзы, имеющего химическую формулу MexV2O5 , где Me - литий, натрий или калий, V - ванадий, О - кислород, при этом рабочая поверхность термоэмиттера совпадает с кристаллографической плоскостью [020] монокристалла оксидной бронзы, на рабочей поверхности термоэмиттера имеется пленка тугоплавкого металла. При этом тугоплавкий металл выбран из группы молибден, вольфрам, рений, рутений, родий. Техническим результатом является повышение эффективности ионизации органических нитросоединений на поверхности термоэмиттера и повышение долговечности термоэмиттера на основе оксидной бронзы щелочного металла при работе термоэмиттера в условиях воздуха атмосферного давления. 3 з.п. ф-лы, 1 табл., 2 ил.
Наверх