Станция групповой катодной защиты

Станция групповой катодной защиты относится к оборудованию для электрохимической защиты подземных металлических сооружений от коррозии и может быть использована для защиты сразу нескольких объектов. Станция содержит каналы катодной защиты, выполненные с возможностью подключения защищаемых объектов и анодных заземлителей, модуль преобразователя, включающий выпрямитель, широтно-импульсный модулятор, трансформатор с вторичными обмотками, соединяемыми с каналами катодной защиты, каждый из которых состоит из последовательно соединенных модуля усилителя, модуля выпрямителя, модуля фильтра и модуля регулируемого балласта, каждый модуль усилителя соединен через датчик тока с модулем управления и защиты, формирующим выходные сигналы управления по току и напряжению, каждый модуль регулируемого балласта соединен через датчик напряжения с модулем управления и защиты, а модуль управления и защиты связан с модулем преобразователя. Изобретение позволяет повысить ремонтопригодность, надежность работы устройства и эффективность катодной защиты. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к оборудованию для электрохимической защиты подземных металлических сооружений от коррозии и может быть использовано для защиты сразу нескольких объектов, а также в качестве источника тока в различных областях техники.

Известна модульная установка для катодной защиты по патенту РФ на изобретение №2293139, C23F 13/04, 2007. Модульная установка содержит электрод сравнения, модуль преобразования, включающий источник питания, усилитель мощности, связанный с анодным заземлителем и датчиком тока, блок управления, содержащий модулятор, первый источник опорного напряжения, первый блок сравнения, установка дополнительно содержит датчик потенциала и как минимум второй модуль преобразования, идентичный первому и связанный с ним, при этом в блок управления каждого модуля преобразования дополнительно введены второй источник опорного напряжения, второй блок сравнения, коммутатор и накопитель.

Недостатком модульной установки является то, что не все элементы установки имеют модульное исполнение, в частности усилитель мощности, наиболее часто выходящий из строя элемент, не имеет модульного исполнения, что затрудняет его замену и в целом снижает ремонтопригодность установки.

Известна адаптивная система катодной защиты подземных сооружений по патенту РФ на изобретение №2366760, C23F 13/02, 2009. Адаптивная система содержит трансформатор, выпрямитель, фильтр, анодный заземлитель, кремниевые вентили, система дополнительно содержит силовые частотные ключи, частотные фильтры, блоки управления силовыми частотными ключами, сумматоры коррекции величины защитного потенциала, задатчик величины защитного потенциала, инвертирующий повторитель аналогового сигнала, дифференциальный усилитель разности защитных потенциалов. Недостатком адаптивной системы является то, что ее элементы не имеют модульного исполнения, что затрудняет ремонт при выходе их из строя. Кроме того, схема системы не предусматривает защиту от превышения тока или напряжения, что снижает надежность работы системы.

В качестве ближайшего аналога заявляемому техническому решению выбрана многоканальная станция катодной защиты по патенту РФ на изобретение №2412280, C23F 13/02, 2011. Станция содержит силовой трансформатор, выполненный с несколькими вторичными обмотками, выпрямители-стабилизаторы, анодные заземлители, датчики защитного потенциала, модули ввода-вывода, которые соединены с приемопередающим модулем и устройство плавного включения. Недостатком станции является невозможность изменения мощности каналов катодной защиты, что снижает эффективность катодной защиты.

Технический результат заключается в повышении ремонтопригодности, надежности работы устройства и эффективности катодной защиты.

Технический результат обеспечивается тем, что станция групповой катодной защиты содержит каналы катодной защиты, выполненные с возможностью подключения защищаемых объектов и анодных заземлителей, отличается тем, что она содержит модуль преобразователя, включающий выпрямитель, широтно-импульсный модулятор, трансформатор с вторичными обмотками, соединяемыми с каналами катодной защиты, каждый из которых состоит из последовательно соединенных модуля усилителя, модуля выпрямителя, модуля фильтра и модуля регулируемого балласта, каждый модуль усилителя соединен через датчик тока с модулем управления и защиты, формирующим выходные сигналы управления по току и напряжению, каждый модуль регулируемого балласта соединен через датчик напряжения с модулем управления и защиты, а модуль управления и защиты связан с модулем преобразователя. Модули станции выполнены с разъемами. Модули регулируемых балластов связаны с измерительными электродами.

Модуль преобразователя, включающий выпрямитель, широтно-импульсный модулятор, трансформатор с вторичными обмотками, соединяемыми с каналами катодной защиты, выполнен общим для всей станции групповой катодной защиты, что позволяет при ремонте и замене модулей не производить его замену, поскольку он, как правило, при аварии остается в исправном состоянии, что упрощает ремонт станции. В модуль преобразователя включили наиболее надежные элементы станции, которые долго не выходят из строя, а наименее надежные элементы станции, например, такие как усилители, вывели в отдельные быстро заменяемые модули, что повысило ремонтопригодность и надежность работы устройства.

Трансформатор с вторичными обмотками позволяет подключать столько каналов катодной защиты, сколько защищаемых объектов. Трансформатор с вторичными обмотками позволяет подключать как мостовые, так и полумостовые усилители. Если для защиты объекта требуется большая мощность, то в соответствующий канал катодной защиты подключают мостовой усилитель, а если для защиты объекта требуется меньшая мощность, то подключают полумостовой усилитель, что повышает эффективность катодной защиты. Кроме того, во время работы станции, за счет модульной конструкции, можно изменять мощность каждого канала катодной защиты для более эффективной защиты объекта. Например, если мощности полумостового усилителя не хватает для эффективной защиты объекта, его можно заменить на мостовой усилитель.

Выполнение элементов станции в виде отдельных модулей с разъемами позволило обеспечить удобный и оперативный ремонт станции, что повысило ее ремонтопригодность. Таким образом, при выходе из строя модуля преобразователя, модуля усилителя, модуля выпрямителя, модуля фильтра, модуля регулируемого балласта или модуля управления и защиты, указанные модули могут быть оперативно заменены на аналогичные модули.

Каждый модуль усилителя связан с датчиком тока, сигнал которого, поступая на модуль управления и защиты, может блокировать работу модуля преобразователя или работу конкретного модуля усилителя при превышении максимального значения тока в канале катодной защиты, в результате чего повышается надежность работы станции.

Каждый модуль регулируемого балласта связан с датчиком напряжения, сигнал которого, поступая на модуль управления и защиты, может блокировать работу модуля преобразователя или работу конкретного модуля регулируемого балласта при превышении максимального значения напряжения в канале катодной защиты, в результате чего повышается надежность работы станции.

Связь между модулем управления и защиты и модулем преобразователя позволяет осуществлять регулировку параметров широтно-импульсного модулятора, а следовательно, величины выходного напряжения модуля преобразователя. Модуль управления и защиты формирует и передает в модуль преобразователя управляющие сигналы защиты по току и напряжению. Кроме того, модуль управления и защиты формирует сигналы регулирования тока и напряжения, поступающие на модули регулируемых балластов.

На чертеже представлена блок-схема станции групповой катодной защиты.

Станция групповой катодной защиты содержит модуль преобразователя 1, который включает выпрямитель 2, широтно-импульсный модулятор 3, трансформатор 4 с вторичными обмотками (на чертеже не показаны). Станция также содержит модули усилителей 5 с датчиками тока 6, модули выпрямителей 7, модули фильтров 8, модули регулируемых балластов 9 с датчиками напряжения 10, модуль управления и защиты 11, измерительные электроды 12, анодные заземлители 13, сопротивления 14, защищаемые объекты 15.

Станция групповой катодной защиты работает следующим образом.

Напряжение в 220 В с частотой 50 Гц поступает на выпрямитель 2 модуля преобразователя 1, где происходит преобразование переменного напряжения в постоянное напряжение. Далее постоянное напряжение поступает на фильтр (на чертеже не показан) модуля преобразователя 1, где происходит сглаживание пульсаций напряжения. После чего сглаженное напряжение поступает на широтно-импульсный модулятор 3 модуля преобразователя 1, где происходит преобразование постоянного напряжения в переменное напряжение с частотой 50-100 кГц. Далее сигнал высокой частоты поступает на трансформатор 4 (выходной трансформатор) модуля преобразователя 1. На выходе трансформатора 4 формируются противофазные сигналы, которые управляют модулями усилителей 5. Модули усилителей 5 могут быть выполнены по мостовой или полумостовой схеме. Комплектацию станции усилителями осуществляют в зависимости от требуемой мощности каждого канала катодной защиты. Используют столько вторичных обмоток трансформатора 4, сколько подключают защищаемых объектов 15. Модули усилителей 5 усиливают сигналы до требуемой мощности. Далее сигналы с модулей усилителей 5 поступают на модули выпрямителей 7, которые выпрямляют переменное напряжение высокой частоты в постоянное напряжение. После чего постоянное напряжение подается на модули фильтров 8, которые сглаживают пульсации, полученные при выпрямлении напряжения высокой частоты. Далее постоянное напряжение поступает на модули регулируемых балластов 9, где происходит регулировка выходного напряжения до требуемой величины. Модули регулируемых балластов 9 используют для установления требуемого потенциала на поверхности защищаемых объектов 15. Регулирование осуществляют как в ручном режиме, так и в автоматическом при помощи модуля управления и защиты 11. Модули регулируемых балластов 9 имеют несколько режимов работы:

- режим стабилизации тока;

- режим стабилизации напряжения;

- режим ручного регулирования тока;

- режим ручного регулирования напряжения;

- режим автоматического поддержания защитного потенциала.

Модули усилителей 5 снабжены датчиками тока 6, сигналы которых, поступая на модуль управления и защиты 11, могут блокировать работу модуля преобразователя 1 или работу конкретного модуля усилителя 5 при превышении максимального значения тока. Модули регулируемых балластов 9 снабжены датчиками напряжения 10, сигналы которых, поступая на модуль управления и защиты 11, могут блокировать работу модуля преобразователя 1 или работу конкретного модуля регулируемого балласта 9 при превышении максимального значения напряжения. Модуль управления и защиты 11 выполнен на микроконтроллере и имеет энергонезависимую память. На модуль управления и защиты 11 подаются сигналы с модулей усилителей 5 и с модулей регулируемых балластов 9, на основании которых модуль управления и защиты 11 определяет величину выходного тока каждого канала катодной защиты, величину выходного напряжения каждого канала катодной защиты, суммарный потенциал каждого канала катодной защиты. Модуль управления и защиты 11 формирует свои выходные сигналы управления. При превышении допустимого тока и напряжения в канале катодной защиты модуль управления и защиты 11 формирует сигнал блокировки данного канала.

Модуль управления и защиты 11 принимает следующие входные сигналы:

- сигнал уровня тока каждого канала катодной защиты;

- сигнал уровня напряжения каждого канала катодной защиты;

- сигнал уровня защитного потенциала каждого канала катодной защиты.

Модуль управления и защиты 11 формирует следующие выходные сигналы, которые служат управляющими сигналами:

- сигнал управления защитой по току;

- сигнал управления защитой по напряжению;

- сигнал управления регулировки тока;

- сигнал управления регулировки напряжения.

Управляющие сигналы из модуля управления и защиты 11 поступают в модуль преобразователя 1, в модули усилителей 5 и в модули регулируемых балластов 9. Измерительные электроды 12 осуществляют контроль защитного потенциала на трубопроводе. Измерительные электроды 12 располагают в непосредственной близости от защищаемых объектов 15. Анодные заземлители 13 создают цепь протекания защитного тока (станция - труба - сопротивление грунта - анодный заземлитель - станция). Анодные заземлители 13 представляют собой отливку из коррозионно-стойкого металла. Сопротивления 14 - сопротивление грунта между защищаемыми объектами 15 и анодными заземлителями 13. К каналам катодной защиты (на чертеже не показаны) подключают защищаемые объекты 15 и анодные заземлители 13.

Таким образом, заявляемое изобретение позволяет повысить ремонтопригодность, надежность работы устройства и эффективность катодной защиты.

1. Станция групповой катодной защиты, содержащая каналы катодной защиты, выполненные с возможностью подключения защищаемых объектов и анодных заземлителей, отличающаяся тем, что она содержит модуль преобразователя, включающий выпрямитель, широтно-импульсный модулятор, трансформатор с вторичными обмотками, соединяемыми с каналами катодной защиты, каждый из которых состоит из последовательно соединенных модуля усилителя, модуля выпрямителя, модуля фильтра и модуля регулируемого балласта, каждый модуль усилителя соединен через датчик тока с модулем управления и защиты, формирующим выходные сигналы управления по току и напряжению, каждый модуль регулируемого балласта соединен через датчик напряжения с модулем управления и защиты, а модуль управления и защиты связан с модулем преобразователя.

2. Станция по п.1, отличающаяся тем, что модули выполнены с разъемами.

3. Станция по п.1, отличающаяся тем, что модули регулируемых балластов связаны с измерительными электродами.



 

Похожие патенты:

Изобретение относится к технике защиты от коррозии подземных металлических сооружений и может быть использовано для защиты газопроводов и нефтепроводов. .

Изобретение относится к области защиты от коррозии подземных металлических сооружений. .

Изобретение относится к области защиты от коррозии подземных металлических сооружений. .

Изобретение относится к оборудованию для электрохимической защиты подземных металлических сооружений от коррозии и может быть использовано в средствах защиты протяженных металлических сооружений различного назначения, в том числе трубопроводов.
Изобретение относится к способам защиты от эрозионно-коррозионного разрушения подводной поверхности морских сооружений освоения шельфа замерзающих морей, а также от воздействия на них ледовых образований и может быть использовано в другой морской технике, предназначенной для ледовых условий эксплуатации.

Изобретение относится к электрооборудованию для катодной защиты подземных металлических сооружений от электрохимической коррозии и может быть использовано для защиты сразу нескольких объектов, таких как скважины, нефтепроводы, газопроводы, водопроводы, продуктопроводы различного назначения, кабели связи, объекты коммунального хозяйства, резервуары-хранилища.

Изобретение относится к области энергетики и предназначено для защиты от коррозии металлоконструкций в химической и нефтегазовой промышленности. .

Изобретение относится к технике защиты от коррозии подземных металлических сооружений. .

Изобретение относится к области электрохимической защиты металлов от коррозии и может быть использовано для защиты трубопроводов в водоснабжении, газовой и нефтяной промышленности.

Изобретение относится к оборудованию для электрохимической защиты и может быть использовано в системах катодной защиты подземных металлических сооружений от коррозии

Изобретение относится к области электрохимической защиты подземных сооружений от коррозии

Изобретение относится к области защиты от коррозии и может быть использовано для защиты газопроводов, нефтепроводов и других подземных металлических сооружений

Изобретение относится к оборудованию для электрохимической защиты подземных металлических сооружений от коррозии и может быть использовано в средствах защиты протяженных металлических сооружений, в том числе трубопроводов. Способ включает периодическое снятие вблизи катодной станции контрольной зависимости f1 потенциала подземного сооружения от логарифма тока катодной станции, определение верхнего значения потенциала Uверх, соответствующего точке изменения крутизны контрольной зависимости f1, определение и последующее поддержание в интервале между снятиями контрольных зависимостей оптимального значения потенциала подземного сооружения, при этом дополнительно снимают контрольные зависимости f2 и f3 потенциала, как минимум, еще в двух точках, расположенных на границе защитной зоны по обеим сторонам вдоль сооружения, для зависимостей f2 и f3 определяют значения токов Iн2 и Iн3, соответствующих минимальному нормированному потенциалу Uмин, выбирают наибольшее значение из токов Iн2 и Iн3, для контрольной зависимости f1 определяют значение потенциала, соответствующее наибольшему значению тока, которое принимают за нижнее допустимое Uнижн, а в качестве оптимального потенциала выбирают потенциал между значениями Uнижн и Uверх. Способ позволяет повысить надежность защиты сооружения на всем его протяжении при снижении энергозатрат. 1 з.п. ф-лы, 2 ил.

Изобретение относится к системам защиты от эрозионно-коррозионного разрушения подводной поверхности корпусов морских судов, морских сооружений освоения шельфа замерзающих морей, например морских стационарных и плавучих буровых платформ, и может быть использовано в другой морской технике, предназначенной для эксплуатации в ледовых условиях. Система включает защитное покрытие, нанесенное на наружную обшивку корпуса на участках воздействия льда в морской воде, и катодную защиту от коррозии, при этом защитное покрытие нанесено в виде эрозионно стойкого плакирующего слоя из нержавеющей стали, а аноды катодной защиты установлены на подводной поверхности наружной обшивки корпуса, причем эрозионно стойкий плакирующий слой выполнен из нержавеющей стали с содержанием углерода в пределах 0,01-0,04 мас.% и дополнительно легированной титаном или ниобием в количестве 0,05-0,50 мас.%. Технический результат: снижение межкристаллитной коррозии защитного покрытия корпусов морских судов и сооружений. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области электрохимической защиты от коррозии подземных металлических сооружений, в частности трубопроводов. Устройство содержит катодную станцию, выполненную с возможностью подключения к сооружению через датчик выходного тока и снабженную датчиком выходного напряжения и анодным заземлителем, станцию слежения, выполненную с возможностью подключения к датчикам выходного напряжения и тока и к катодной станции, а также измерительный пункт, расположенный вблизи катодной станции и включающий датчик потенциала и измеритель потенциала, соединенный с датчиком потенциала, сооружением и со станцией слежения, при этом оно дополнительно содержит, по крайней мере, два удаленных от катодной станции измерительных пункта, расположенных на границе защитной зоны катодной станции по обе от нее стороны вдоль защищаемого сооружения и подключенных к источнику электропитания, при этом станция слежения снабжена центральным приемопередатчиком, а каждый удаленный измерительный пункт снабжен резидентным приемопередатчиком, соединенным с центральным приемопередатчиком посредством канала связи. Технический результат - повышение эффективности защиты от коррозии при снижении энергозатрат. 4 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к области телемеханики и автоматизированных систем измерения, контроля, регулирования, диагностики и управления удаленными объектами, а именно к системам коррозионного мониторинга объектов электрохимической защиты магистральных газопроводов, в частности установок катодной защиты. Технический результат - повышение надежности работы установок катодной защиты магистральных газопроводов. Телемеханическая система контроля и управления установками катодной защиты магистральных газопроводов содержит установки катодной защиты, диспетчерский пункт с автоматизированным рабочим местом диспетчера и канал связи между станциями катодной защиты и диспетчерским пунктом. Канал связи организован посредством подключения к воздушной линии электропередач высокочастотных заградителей и конденсаторов связи, соединенных с фильтрами присоединения, снабженными заземляющими ножами и подключенными к блокам высокочастотной связи, один из которых установлен в диспетчерском пункте и связан с автоматизированным рабочим местом диспетчера, а другие - в установках катодной защиты и связаны с блоками контроля и управления, кроме того, к каждому анодному заземлителю и к каждой точке дренажа трубопровода подключен измерительный преобразователь, связанный с блоком контроля и управления. 2 ил.

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации обсадных колонн скважин и нефтепромысловых трубопроводов. Технический результат заключается в повышении эффективности защиты от коррозии обсадных колонн скважин и нефтепромыслового оборудования, повышении надежности их работы, увеличении межремонтного интервала. Способ катодной защиты обсадных колонн скважин и нефтепромысловых трубопроводов от коррозии включает этапы, на которых предварительно бурят скважину до глубины, большей на 2,5-3 м длины анодного заземлителя, разбуривают скважину в интервале заглубления анодного заземлителя, в который устанавливают ковер, по окончании бурения непосредственно перед спуском электродов в скважину закачивают до верхнего уровня ковера глинистый раствор, устанавливают анодный заземлитель, устанавливают защитный ток для начального периода эксплуатации системы катодной защиты, производят поляризацию в течение 3-7 суток, после чего измеряют общие и поляризационные потенциалы защищаемых сооружений, при изменении силы защитного тока более чем на 20% от установленной делают вывод об утечке глинистого раствора и закачивают до верхнего уровня анода анодного заземлителя гель, состоящий на 100 литров воды: 2 кг мела, 2 кг клея марки КМЦ и 1 кг соли, закачанный гель выдерживают до превращения в желеобразное состояние 5-10 часов, снова замеряют силу тока, по восстановлению силы тока до исходной судят о полном восстановлении токопроводности между грунтом и анодом и о достижении катодной защиты скважины. Устройство катодной защиты обсадных колонн скважин и нефтепромысловых трубопроводов от коррозии содержит электрод-токоввод с кабелем, рабочий электрод, кабельный вывод, контрольно-измерительный пункт, перфорированную полимерную газоотводную трубку, ковер, трубу обсаживающую полиэтиленовую, канат капроновый, заполнитель, в качестве которого используют гель, состоящий на 100 литров воды: 2 кг мела, 2 кг клея марки КМЦ и 1 кг соли. 2 н. и 6 з.п. ф-лы, 2 ил.
Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации трубопроводов системы нефтесбора и поддержания пластового давления нефтяного месторождения. Техническим результатом является экономия электроэнергии и устранение коррозии зон трубопроводов возле электроизолирующих вставок. Способ эксплуатации трубопроводов системы нефтесбора и поддержания пластового давления нефтяного месторождения включает создание разности потенциалов между трубопроводами и заземлителями, электрическое разъединение пункта схождения трубопроводов и самих трубопроводов с помощью электроизолирующих вставок, измерение разности потенциалов между концами электроизолирующей вставки и/или измерения падения напряжения на электроизолирующей вставке, установку величины защитного потенциала, обеспечивающего необходимую длину защищаемой зоны, использование диэлектрического материала наружной изоляции трубопроводов, контроль герметичности трубопровода и целостности его наружной изоляции. Возле каждого трубопровода размещают стационарные измерительные неполяризующиеся электроды сравнения длительного действия и перпендикулярно оси трубопровода вспомогательные стальные датчики потенциала. Выполняют электрическую коммутацию трубопровода с завышенным значением потенциала с трубопроводом с заниженным значением потенциала и регулирование величины устанавливаемых потенциалов на обоих трубопроводах, периодическое определение потенциалов с использованием стационарных измерительных неполяризующихся электродов сравнения длительного действия и вспомогательных стальных датчиков потенциала на коммутируемых трубопроводах с идентификацией каждого измерения по времени и разрыв коммутации при возвращении защитного поляризационного потенциала трубопровода к нормальному значению, регулировку защитного потенциала в точке создания разности потенциалов между трубопроводами и заземлителями, по результатам периодического определения потенциалов с использованием стационарных измерительных неполяризующихся электродов сравнения длительного действия и вспомогательных стальных датчиков потенциала. 1 з.п. ф-лы.

Изобретение относится к области защиты от электрохимической коррозии подземных металлических сооружений. Способ включает следующие операции: на защищаемом участке в электрическую цепь электрозащитной установки подключают дополнительные источники постоянного тока с точками дренирования на подземном сооружении с помощью кабеля от каждого дополнительного источника постоянного тока с созданием зон защиты от каждого дополнительного источника постоянного тока, определяют зону эффективной защиты по величине наведенного отрицательного потенциала от минус 0,90 В до минус 2,50 В от точки подключения дополнительного источника постоянного тока до точки на защищаемом сооружении, в которой продольное сопротивление сооружения будет равно переходному сопротивлению «сооружение-земля», а анодное заземление размещают в пределах любой защитной зоны. Технический результат: исключение на защищаемом подземном сооружении образования анодных зон, приводящих к коррозионным разрушениям. 4 табл., 5 ил.
Наверх