Когерентный оптический рефлектометр для обнаружения вибрационных воздействий



Когерентный оптический рефлектометр для обнаружения вибрационных воздействий
Когерентный оптический рефлектометр для обнаружения вибрационных воздействий

 


Владельцы патента RU 2477838:

Общество с ограниченной ответственностью "ПетроФайбер" (RU)

Рефлектометр содержит связанные между собой импульсный модулятор и импульсный источник излучения и средство организации двунаправленной передачи излучения. Средство организации двунаправленной передачи излучения имеет связь с импульсным источником излучения, с чувствительным волокном и через фотоприемник - с блоком управления и обработки, соединенным с входом импульсного модулятора. Связь средства организации двунаправленной передачи излучения с импульсным источником излучения выполнена в виде двух оптических путей, образованных двумя оптическими разветвителями. Один из них подсоединен к выходу импульсного источника, другой - к средству организации двунаправленной передачи излучения. Один из оптических путей имеет линию задержки и в одном из них расположен фазовый модулятор, связанный с блоком управления и обработки. 8 з.п. ф-лы, 2 ил.

 

Изобретение относится к информационно-измерительной технике и может быть использовано для вибродиагностики сооружений, обнаружения несанкционированных воздействий на объекты, охраны периметров и обнаружения утечек газа или жидкости из трубопроводов.

Известен фазочувствительный когерентный импульсный рефлектометр, описанный в статье « Distributed Fiber-Optic Intrusion Sensor System», Juan C. Juarez, Eric W. Maier, Kyoo Nam Choi, and Henry F. Taylor. Journal of Lightwave Technology, Vol.23, Issue 6, pp.2081 (2005) и защищенный патентом US 5194847, 1993. Указанный рефлектометр содержит в качестве источника оптического излучения непрерывный волоконный лазер с узкой полосой (до 3 кГц) и импульсный модулятор.

Недостатком известного устройства является существенная нелинейность выходного сигнала, обусловленная случайным начальным положением рабочей точки виртуальных интерферометров. Это приводит к появлению малочувствительных точек и ухудшению характеристик чувствительности информационно-измерительной системы.

Известен принятый за ближайший аналог более простой по конструкции когерентный рефлектометр (RU 2287131, 2006), содержащий электронный импульсный модулятор 1, источник когерентного излучения - импульсный полупроводниковый лазер 2 с шириной спектра порядка 1/Т (одночастотный лазер), где Т - длительность импульса излучения, светоделительное устройство 3 для организации рефлектометрического канала, которое может представлять собой циркулятор, направленный волоконный ответвитель или светоделитель на объемных оптических элементах, чувствительное волокно значительной протяженности (до 30-100 км), предпочтительно одномодовое, 4, фотоприемник с усилителем 5 и блок управления и обработки сигнала 6. Последний связан с модулятором 1. Лазер 2, светоделительное устройство 3 и чувствительное волокно 4 соединены последовательно. Выходной порт устройства 3 связан с фотоприемником 5, а последний - с блоком управления и обработки сигнала 6. Указанная выше ширина спектра полупроводникового лазера при работе в импульсном режиме обеспечивается либо применением распределенной обратной связи на полупроводниковом кристалле (РОС-лазер), либо путем организации распределенной обратной связи с помощью брэгговской внутриволоконной решетки. Требуемое пространственное разрешение устройства обеспечивается длительностью импульса оптического излучения Т и временным разрешением фотоприемника 5, которое должно быть не хуже длительности импульса Т. Для увеличения импульсной мощности между лазерным диодом 2 и циркулятором 3 может быть установлен волоконный усилитель, например, на основе эрбиевого активного волокна.

Недостатком ближайшего аналога является также существенная нелинейность выходного сигнала, обусловленная случайным начальным положением рабочей точки виртуальных интерферометров. Это приводит к появлению малочувствительных точек и ухудшению характеристик чувствительности информационно-измерительной системы.

Задачей настоящего изобретения является создание устройства, обладающего высокой чувствительностью и позволяющего управлять положением рабочих точек виртуальных интерферометров, в том числе организовывать фазовую модуляцию (или фазовую манипуляцию) для получения неискаженных акустических сигналов от всех виртуальных чувствительных элементов, расположенных по длине чувствительного волокна (оптического кабеля).

Техническим результатом предлагаемого изобретения являются повышение чувствительности к вибрационным воздействиям за счет возможности управления рабочими точками виртуальных интерферометров.

Технический результат достигается тем, что в когерентном оптическом рефлектометре для обнаружения вибрационных воздействий, содержащем связанные между собой импульсный модулятор и импульсный источник излучения, средство организации двунаправленной передачи излучения, имеющее связь с импульсным источником излучения, с чувствительным волокном и через фотоприемник - с блоком управления и обработки, соединенным с входом импульсного модулятора, связь средства организации двунаправленной передачи излучения с импульсным источником излучения выполнена в виде двух оптических путей, образованных двумя оптическими разветвителями, один из которых подсоединен к выходу импульсного источника, другой - к средству организации двунаправленной передачи излучения, при этом один из оптических путей имеет линию задержки и в одном из них расположен фазовый модулятор, связанный с блоком управления и обработки.

В конкретных случаях реализации средство организации двунаправленной передачи излучения может быть выполнено в виде светоделителя (направленного ответвителя) или циркулятора, фазовый модулятор может быть интегрально-оптическим или, например, на основе пьезоэлемента, механически связанного с оптическим волокном, импульсный источник излучения - в виде одночастотного лазера (полупроводникового), например, в виде диода.

Для увеличения импульсной мощности между импульсным источником излучения и первым разветвителем или между вторым разветвителем и средством организации двунаправленной передачи излучения может быть установлен волоконный усилитель, например, на основе эрбиевого активного волокна.

С целью исключения возникновения интерференции между оптическими волнами, распространяющимися по двум оптическим путям между разветвителями, целесообразно, чтобы длина L линии задержки удовлетворяла соотношению

L>tc/n,

где L - длина линии задержки;

t - длительность импульса источника излучения;

с - скорость света в вакууме;

n - эффективный показатель преломления материала линии задержки.

На графических изображениях схематически показан предлагаемый когерентный оптический рефлектометр для обнаружения вибрационных воздействий (фиг.1) и импульс примерно удвоенной длительности, возникший в результате суммирования прямого и задержанного импульсов (фиг.2).

Устройство включает связанные между собой импульсный модулятор 1 и импульсный источник 2 излучения. Средство 3 организации двунаправленной передачи излучения имеет связь с импульсным источником 2 излучения, с чувствительным волокном 4 и через фотоприемник 5 - с блоком 6 управления и обработки. Связь средства 3 организации двунаправленной передачи излучения с импульсным источником 2 излучения выполнена в виде двух оптических путей, образованных двумя оптическими разветвителями 7, 8. Один из разветвителей 7 подсоединен к выходу импульсного источника 2 излучения, другой 8 - к средству 3 организации двунаправленной передачи излучения. Один из оптических путей имеет линию задержки 9. В одном из оптических путей расположен фазовый модулятор 10, связанный с блоком 6 управления и обработки. Блок 6 управления и обработки соединен с входом импульсного модулятора 1.

В конкретном примере осуществления изобретения для управления положением рабочей точки зондирующий оптический импульс выполняют составным как сумму двух полуимпульсов с фазовой модуляцией (или манипуляцией) между этими полуимпульсами. С этой целью в известное устройство, содержащее электронный импульсный модулятор 1, источник когерентного излучения - импульсный полупроводниковый лазер 2 с шириной спектра порядка 1/Т, где Т - длительность импульса излучения, светоделительное устройство - светоделитель (направленный ответвитель) 3 для организации рефлектометрического канала, чувствительное волокно значительной протяженности (до 30-100 км) 4, фотоприемник 5 с усилителем и блок 6 управления и обработки, дополнительно вводят первый оптический разветвитель 7 и второй оптический разветвитель 8. Волоконную линию 9 задержки, фазовый модулятор 10 размещают в одном из двух образованных между оптическими разветвителями 7, 8 оптических путей. Фазовый модулятор 10 управляется электрическим сигналом, вырабатываемым блоком 6 управления и обработки. Для увеличения импульсной мощности между лазерным диодом 2 и разветвителем 7 или между разветвителем 8 и направленный ответвитель 3 может быть установлен волоконный усилитель, например, на основе эрбиевого активного волокна (на графическом изображении не показан). Длина линии 9 задержки выбирается таким образом, чтобы не возникала интерференция между оптическими волнами, распространяющимися по двум оптическим путям между разветвителями 7 и 8. С этой целью значение длины L линии 9 задержки должно превышать значение отношения произведения длительности импульса источника 2 излучения (t) и скорости (с) света в вакууме к эффективному показателю (n) преломления материала линии задержки.

Направленные оптические разветвители 7 и 8 представляют собой стандартные изделия волоконно-оптической техники. Линия 9 задержки - есть отрезок оптического волокна длиной, которая обеспечивает задержку на длительность оптического импульса, генерируемого лазером 2. Фазовый модулятор 10 может быть включен в любой из оптических путей между разветвителями 7 и 8. Фазовый модулятор 10 может быть выполнен как интегрально-оптическим, так и на основе механически связанного с оптическим волокном пьезоэлемента или иного устройства, осуществляющего фазовую модуляцию или фазовую манипуляцию оптического сигнала.

Устройство работает следующим образом. По сигналу блока 6 управления и обработки модулятор 1 дает импульс заданной длительности на полупроводниковый лазер 2. В момент протекания по лазеру 2 тока инжекции он формирует когерентный импульс соизмеримой длительности. Этот лазерный импульс посредством разветвителя 7 разводится на два оптических пути, один из которых содержит линию 9 задержки. На оптическом разветвителе 8 происходит суммирование прямого и задержанного импульсов, в результате возникает импульс примерно удвоенной длительности, показанный схематически на фиг.2. Благодаря наличию фазового модулятора 10 обеспечивается управляемый фазовый сдвиг между показанными полуимпульсами. Излучение с изображенной на фиг.2. структурой поступает через направленный ответвитель 3 в чувствительное волокно 4, где рассеивается, в том числе в обратном направлении. Рассеянное излучение поступает через направленный ответвитель 3 на фотоприемник 5. Блок 6 управления и обработки воспринимает полученные сигналы и производит их оцифровку. По команде этого блока осуществляется управление фазовым модулятором 10, благодаря чему можно организовать различные режимы работы устройства (фазовую модуляцию), переключение фазы (манипуляцию) и т.д. Результатом использования предложенного устройства является повышение чувствительности за счет устранения нечувствительных участков или за счет линейного воспроизведения акустических сигналов.

1. Когерентный оптический рефлектометр для обнаружения вибрационных воздействий, содержащий связанные между собой импульсный модулятор и импульсный источник излучения, средство организации двунаправленной передачи излучения, имеющее связь с импульсным источником излучения, с чувствительным волокном и через фотоприемник - с блоком управления и обработки, соединенным с входом импульсного модулятора, отличающийся тем, что связь средства организации двунаправленной передачи излучения с импульсным источником излучения выполнена в виде двух оптических путей, образованных двумя оптическими разветвителями, один из которых подсоединен к выходу импульсного источника, другой - к средству организации двунаправленной передачи излучения, при этом один из оптических путей имеет линию задержки и в одном из них расположен фазовый модулятор, связанный с блоком управления и обработки.

2. Устройство по п.1, отличающееся тем, что фазовый модулятор выполнен интегрально-оптическим.

3. Устройство по п.1, отличающееся тем, что фазовый модулятор выполнен на основе пьезоэлемента, механически связанного с оптическим волокном.

4. Устройство по п.1, отличающееся тем, что средство организации двунаправленной передачи излучения выполнено в виде светоделителя или циркулятора.

5. Устройство по п.4, отличающееся тем, что в качестве светоделителя применен направленный ответвитель.

6. Устройство по п.1, отличающееся тем, что импульсный источник излучения выполнен в виде одночастотного лазера.

7. Устройство по п.6, отличающееся тем, что одночастотный лазер выполнен полупроводниковым, например, в виде диода.

8. Устройство по п.1, отличающееся тем, что между импульсным источником излучения и первым разветвителем или между вторым разветвителем и средством организации двунаправленной передачи излучения установлен волоконный усилитель, например, на основе эрбиевого активного волокна.

9. Устройство по одному из пп.1-8, отличающееся тем, что линия задержки имеет длину L, удовлетворяющую соотношению
L>tc/n,
где L - длина линии задержки;
t - длительность импульса источника излучения;
с - скорость света в вакууме;
n - эффективный показатель преломления материала линии задержки.



 

Похожие патенты:

Изобретение относится к области мониторинга деформации и термических процессов с использованием контрольно-измерительных систем на основе волоконных брэгговских решеток.

Изобретение относится к измерительной технике и может быть использовано в волоконно-оптических датчиках, предназначенных для измерения температуры различных объектов, а также для измерения деформации, перемещения.

Изобретение относится к лазерной технике, в частности к оптоволоконным средствам измерения пространственного распределения температуры/деформаций протяженных объектов, и может найти применение, например, в нефтяной отрасли, энергетике, автомобиле- и самолетостроении, мониторинге деформаций конструкций мостов, опор, зданий.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для диагностики протяженных объектов, используемых при эксплуатации скважин или при транспортировке продукции на пункты сбора и далее и т.п.

Изобретение относится к области измерительной техники, телеметрии и оптоэлектроники, и может быть использовано для контроля деформаций различных конструкций, устройств и сооружений.

Изобретение относится к области измерительной техники, телеметрии и оптоэлектроники и может быть использовано для контроля деформаций крупных сооружений, в электротехнической промышленности при измерении температурных режимов трансформаторов, в геологической разведке при измерении распределения температуры вдоль скважин, в авиационной промышленности при контроле деформаций конструкций летательных аппаратов и т.д.

Изобретение относится к области приборостроения и может быть использовано для измерения давления и определения значений параметров акустических полей в газах и жидкостях.

Изобретение относится к волоконно-оптическим автоколебательным системам на основе микрорезонаторов и может быть использовано в устройствах для измерения различных физических величин, например, температуры, давления, ускорения и др.

Изобретение относится к измерительной технике и может быть использовано для измерения температуры и/или напряжения в процессе непрерывной разливки

Изобретение относится к оптоволоконному датчику для измерения температуры и деформации в продольном направлении измерительного волокна

Изобретение относится к устройствам измерения распределения деформации, использующим в качестве чувствительного элемента оптическое волокно

Изобретение относится к измерительной технике и может применяться для регистрации вибраций, шумов и акустических сигналов

Изобретение относится к датчикам с воздействием на передающую способность оптического волокна. Датчик содержит корпус, внутри которого размещен оптоволоконный чувствительный элемент, способный изменять характеристики излучения, распространяющегося в световоде, в зависимости от деформации. Толкатель передает перемещение контролируемого объекта на чувствительный элемент и проходит через стенку корпуса или является стенкой корпуса. В датчике обеспечивается возможность объединенного воздействия на чувствительный элемент посредством толкателя и оптически управляемого элемента, способного деформироваться под действием падающего на него оптического излучения. Технический результат - обеспечение дистанционного контроля метрологической исправности датчика, расширение диапазона измерений, повышение эксплуатационных характеристик. 2 н. и 19 з.п. ф-лы, 10 ил.

Устройство для мониторинга виброакустической характеристики протяженного объекта содержит непрерывный полупроводниковый лазер, оптический модулятор, предназначенный для формирования периодической последовательности прямоугольных импульсов длительностью в диапазоне от 50 нс до 500 нс и частотой следования от 200 Гц до 50 кГц, чувствительный элемент в виде волоконно-оптического кабеля, узел ввода оптического излучения в чувствительный элемент и вывода рассеянного излучения, фотоприемник, предназначенный для преобразования рассеянного оптического излучения в электрический сигнал, и узел обработки сигнала с процессором, при этом непрерывный полупроводниковый лазер снабжен брэгговским селективным отражателем с возможностью сужения полосы непрерывного излучения лазера до уровня менее 100 кГц, а оптический модулятор выполнен в виде акустооптического модулятора на бегущей акустической волне с возможностью формирования периодической последовательности прямоугольных импульсов с коэффициентом гашения К≥10×lg(T×f), где Т - длительность импульса, f - частота следования. Техническим результатом от применения изобретения является повышение дальности действия, чувствительности и разрешающей способности устройства. 8 з.п. ф-лы, 5 ил.

Изобретение относится к волоконно-оптическому распределенному акустическому измерению для регистрации P- и S-волн в твердой среде. Распределенного акустического измерения можно добиться с использованием немодифицированной волоконной оптики, запуская оптические импульсы в волокно и регистрируя излучение, которое испытывает рэлеевское обратное рассеяние, оттуда. Анализируя отклики в бинах анализа, можно регистрировать акустические возмущения в совокупности дискретных продольных отрезков волокна. Технический результат - обеспечение распределенного волоконно-оптического акустического измерения S- и P- волн. 3 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к области распределенных измерений, а именно к распределенным датчикам акустических и вибрационных воздействий. В распределенном датчике акустических и вибрационных воздействий, содержащем чувствительный элемент в виде волоконно-оптического кабеля и оптически соединенный с ним через оптический интерфейс когерентный фазочувствительный оптический рефлектометр, содержащий оптически соединенные с интерфейсом источник периодической последовательности оптических импульсов и приемник рассеянного излучения с фотодетектором, предназначенный для преобразования рассеянного оптического излучения в электрический сигнал, подаваемый в блок обработки, причем источник периодической последовательности оптических импульсов и блок обработки электрически соединены с блоком управления и синхронизации, а источник периодической последовательности оптических импульсов и/или приемник рассеянного излучения выполнен многоканальным с числом каналов не менее двух и с возможностью регистрации рефлектограмм, формирующихся в каждом из каналов, приемник рассеянного излучения содержит неравноплечный интерферометр Маха-Цендера или Майкельсона с фарадеевскими зеркалами, при этом интерферометр имеет не менее двух выходных каналов, каждый из которых соединен с фотодетектором, а блок управления и синхронизации выполнен с возможностью обеспечения разделения и независимой обработки сигналов с каждого из выходных каналов интерферометра. Техническим результатом изобретения является повышение гарантированной чувствительности и дальности действия распределенного датчика акустических и вибрационных воздействий. 4 з.п. ф-лы, 7 ил.

Раскрыт способ обнаружения опасной ситуации при помощи оптоволоконной сенсорной системы. Опросное устройство содержит источник света, спектрометр и устройство обработки данных. Опросное устройство используют для проведения быстрого сканирования множества волоконно-оптических сенсорных элементов. Первые значения параметра окружающей среды вычисляют для каждого волоконно-оптического сенсорного элемента из спектрографических данных и сравнивают с первым пороговым значением. Если первое значение параметра окружающей среды превышает первое пороговое значение для любого волоконно-оптического сенсорного элемента, быстрое сканирование прерывают для осуществления медленного сканирования с высоким разрешением указанного волоконно-оптического сенсорного элемента. Оптоволоконная сенсорная система передает сигнал тревоги в случае, если указанное медленное сканирование с высоким разрешением выявляет опасную ситуацию. Технический результат - повышение пространственного и/или температурного разрешения. 2 н. и 18 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам контроля грунта, использующим для оценки состояния грунта измерения распределения деформации волоконно-оптического чувствительного элемента, связанного с грунтом. Изобретение позволяет выявлять и определять местоположение таких опасных для сооружений явлений, как разжижение грунта, вымывание грунта или эрозию грунта, которые приводят к потери механической связи чувствительного к деформации сенсорного кабеля с грунтом. Устройство для измерения распределения деформаций грунта и контроля его разжижения, и/или вымывания, и/или дефляции содержит сенсорный оптический кабель, чувствительный к деформации по всей своей длине и связанный механически с грунтом, измерительный блок, связанный с кабелем. Устройство снабжено закрепленными на кабеле пригрузами, провисание которых в случае разжижения, и/или вымывания, и/или дефляции грунта вызывает расчетную деформацию кабеля, регистрируемую измерительным блоком. Техническим результатом изобретения является возможность выявления и определения местоположения таких явлений, как разжижение грунта, вымывание грунта или эрозия грунта. 4 з.п. ф-лы, 2 ил.
Наверх