Способ получения n,s-содержащего полимера на основе хитозана



Способ получения n,s-содержащего полимера на основе хитозана
Способ получения n,s-содержащего полимера на основе хитозана
Способ получения n,s-содержащего полимера на основе хитозана
Способ получения n,s-содержащего полимера на основе хитозана
Способ получения n,s-содержащего полимера на основе хитозана
Способ получения n,s-содержащего полимера на основе хитозана
Способ получения n,s-содержащего полимера на основе хитозана
Способ получения n,s-содержащего полимера на основе хитозана
Способ получения n,s-содержащего полимера на основе хитозана

 


Владельцы патента RU 2478651:

Учреждение Российской академии наук Институт нефтехимии и катализа РАН (RU)

Настоящее изобретение относится к способу получения N,S-циклосодержащего производного хитозана. Описан способ получения N,S-циклосодержащего полимера (I) на основе хитозана, содержащего в макроцепи 1-окса-6-тиа-4,8-диазоциклоундекановые фрагменты:

взаимодействием хитозана с формальдегидом и S-содержащим соединением, отличающийся тем, что в качестве S-содержащего соединения используют сероводород, раствор формальдегида предварительно насыщают H2S и реакцию проводят при мольном соотношении хитозан - формальдегид - сероводород, равном 1:2:1, при температуре 0÷60°С в солянокислой среде в течение 24 часов. Технический результат - получение модифицированного хитозана, проявляющего свойства высокоэффективного сорбента тяжелых металлов для очистки сточных вод, экстрагента для разделения редких, благородных и драгоценных металлов, комплексообразователя биологических молекул. 1 табл., 3 пр.

 

Предлагаемое изобретение относится к органической химии, в частности к способу получения N,S-циклосодержащего производного хитозана (I), имеющего структурную формулу:

где n=50-70%, m=30-50%.

В настоящее время хитозан и его производные рассматриваются как почвенные структурообразователи: компания Экогель выпускает запатентованный хитозансодержащий препарат «Антистресс», предназначенный для ускорения приживляемости, а также акклиматизации импортных или пересаженных растений (http://www.ecogel.ru).

Подобные N,S-циклосодержащие биополимеры, имеющие глюкопиранозные и 1-окса-6-тиа-4,8-диазциклоундекановые гетероциклы, представляют интерес как высокоэффективные сорбенты тяжелых металлов для очистки сточных вод, экстрагенты для разделения редких, благородных и драгоценных металлов, а также селективные комплексообразователи биологических молекул (T.Becker, М.Schlaak, Н.Strasdeit // Reactive and Functional Polymers, 2000, 44, p.289-298. Z. Cao, H. Ge, S. Lai // European Polymer Journal, 2001, 37, p.2141-2143).

Известно, что хитозан, а также его производные являются перспективными полисахаридными материалами для создания ионообменных мембран, применяемых при ультрафильтрации и диализе, а их комплексообразующая способность может использоваться для селективного извлечения ряда металлов из морской воды (Э.В.Прут, А.Н.Зеленецкий // Успехи химии, 2001, т.70, №1, с.72-87). Хитозан и его фосфорсодержащие производные, в частности фосфат хитозана, могут использоваться в качестве биосовместимых материалов (Wang X., Ma J., Wang Y., He B. // Biomaterials, 2001, v.22, no.16, p.2247), сорбентов для извлечения урана (Sakaguchi Т., Hirokoshi Т., Nakajima А. // Agric. Biol. Chem., 1981, v.45, no.10, p.2191), хиральных матриц для создания металлокомплексных катализаторов (Guibal Е. // Prog. Polym. Sci., 2005, v.30, no.1, p.71).

Согласно литературным данным химическая модификация хитозана может осуществляться по всем функциональным группам. Так, известен способ получения N,О-карбоксиметил-N,О-сульфопроизводного хитозана (Zhao Xia, LV Zhihua, XU Jiamin, YU Guangli // Journal of Ocean University of Qingdao, 2003, v.2, no.1, p.69-74), обладающего ингибирующим действием по отношению к тромбоцитам крови:

Существуют примеры модификации хитозана исключительно по первичной аминогруппе полисахарида. Известен способ получения N-алкилпроизводных хитозана, который основан на взаимодействии хитозана с алифатическими альдегидами путем введения алкильных заместителей по аминогруппе исходного полимера через основания Шиффа (Keisuke Kurita, Satoko Mori, Yasuhiro Nishiyama, Manabu Harata // Polymer Bulletin, 2002, 48, p.159-166). Было показано, что с увеличением алкильного радикала возрастает антибактериальная активность производных хитозана (Chun Но Kim, Jang Won Choi, Heung Jae Chun, Kyu Suk Choi // Polymer Bulletin, 1997, v.38, no.4, p.387-393).

Наиболее близким прототипом является способ, основанный на взаимодействии хитозана с формальдегидом и тиолом с получением серосодержащего производного, имеющего привитые линейные N-алкилтиометильные группы (Tanja Becker, Michael Schlaak, Henry Strasdeit // Reactive and Functional Polymers, 2000, 44, p.289-298), который селективно сорбирует кадмий в присутствии солей никеля и цинка.

Таким образом, в литературе отсутствуют данные о модификации хитозана по аминогруппе с получением N,S-содержащих циклических производных хитозана.

Перед авторами стояла задача получения циклического N,S-содержащего производного хитозана взаимодействием тиометилирующего реагента «CH2O-H2S» (A Wohl. Berichte, 1886, 19, 2344) с первичными аминогруппами исходного биополимера. Сведения о получении указанного выше циклического производного подобным методом в литературе отсутствуют.

Поставленная цель достигается взаимодействием насыщенного сероводородом водного 37%-ного раствора формальдегида с солянокислым раствором хитозана, взятыми в мольном соотношении исходных реагентов хитозан:формальдегид:сероводород, равном 1:2:1, при температуре 0-60°С и перемешивании в течение 24 часов. Реакционную смесь нейтрализуют слабым раствором NaOH, модифицированный полимер осаждают 70%-ным этанолом и центрифугируют. При этом получают N,S-циклосодержащее производное хитозана (I), в макроцепи которого наряду с 2-амино-D-пиранозными фрагментами имеются 1-окса-6-тиа-4,8-диазациклоундекановые фрагменты. Реакция протекает по схеме:

где n=50-70%, m=30-50%.

Изучено влияние модифицированного хитозана (I) и его солей на основе щавелевой (С2Н2О4) и аскорбиновой (С6Н8О6) кислот на силу роста проростков и развитие корневой гнили на растениях пшеницы. Объекты исследований были обработаны водными растворами образца (I) и его солями с концентрацией 1%, 0,1% и 0,01%. Результаты исследований представлены в таблице 1. Величина показателей характеризует отношение длины листа к длине корня.

Таблица 1
Влияние продукта (I) и его солей на силу роста и развитие корневой гнили на растениях пшеницы
Показатель/концентрация Контроль Образец I I·C2H2O4 I·C6H8O6
Сила роста/1% 1,05 0,79 0,68 1,19
0,1% 1,05 0,97 0,92 0,92
0,01% 1,05 1,08 1,0 0,91
Развитие корневой гнили/
1% 39,9 14,5 17,8 19,2
0,1% 14,1 17,8 0
0,01% 6,6 14,7 2,8

Показано, что продукт (I) в концентрации 0,01% влияет на силу роста проростков пшеницы, а на подавление корневой гнили влияет как сам, так и его соли в концентрациях от 1,0% до 0,01%. Аддукт с аскорбиновой кислотой в концентрации 0,1% подавляет развитие корневой гнили полностью. В результате проведенных исследований выявлено, что продукт тиометилирования хитозана проявляет хорошую фунгицидную активность, при этом он экологически абсолютно безопасен и коммерчески доступен.

Существенные отличия предлагаемого способа

В предлагаемом способе осуществляется взаимодействие насыщенного сероводородом формальдегида - диэлектрофильного реагента, способного одновременно взаимодействовать с двумя аминогруппами хитозана - (1-4)-2-амино-2-дезокси-D-гликополисахаридом. В результате данный способ позволяет получить циклическое N,S-содержащее производное хитозана (I) с 1-окса-6-тиа-4,8-диазациклоундекановыми фрагментами в макроцепи, сведения о котором в литературе отсутствуют.

В отличие от прототипа (Tanja Becker, Michael Schlaak, Henry Strasdeit // Reactive and Functional Polymers, 2000, 44, p.289-298) реакция проходит с образованием S,N-гетероциклов на хитозановой матрице.

Преимущества предлагаемого способа

Способ позволяет получить N,S-циклосодержащее производное хитозана (I), образующее устойчивый гидрогель, синтез которого в литературе не описан, и отличается простотой проведения эксперимента.

Способ поясняется примером

Пример 1. В трехгорлую колбу, снабженную мешалкой, обратным холодильником и барботером, термостатированную при заданной температуре, загружали 3,3 мл 37%-ного (10 ммоль) формалина, 30 мин барботировали сероводород (получен из расчетного количества Na2S и HCl) с образованием смеси CH2O и H2S в соотношении 2:1. Затем к реакционной массе прибавляли по каплям 0,8 г (5 ммоль) хитозана, растворенного в 100 мл 2%-ной HCl. Смесь перемешивали при 0°С в течение 24 часов. Реакционную массу нейтрализовали раствором NaOH до pH=7, модифицированный хитозан осаждали 70%-ным этанолом в соотношении по объему 1:3, добавляя по каплям концентрированный раствор NaCI. Осажденный полимер центрифугировали и трехкратно промывали 70%-ным спиртом, сушили на воздухе. В результате получили 1,04 г N,S-циклосодержащего производного хитозана (I) с 30%-ной функционализацией.

Пример 2. В трехгорлую колбу, снабженную мешалкой, обратным холодильником и барботером, термостатированную при заданной температуре, загружали рассчитанное количество 37%-ного формалина, 30 мин барботировали сероводород (получен из расчетного количества Na2S и HCl) с образованием смеси CH2O и H2S в соотношении 2:1. Затем к реакционной массе прибавляли по каплям расчетное количество моль хитозана (0,8 г), растворенного в 100 мл 2%-ной HCl. Смесь перемешивали при температуре 20°С в течение 24 часов. Реакционную массу нейтрализовали раствором NaOH до рН 7, модифицированный хитозан осаждали 70%-ным этанолом в соотношении по объему 1:3, добавляя по каплям концентрированный раствор NaCI. Осажденный полимер центрифугировали и трехкратно промывали 70%-ным спиртом, сушили на воздухе. В результате получили 1,20 г N,S-циклосодержащего производного хитозана (I) с 35%-ной функционализацией.

Пример 3. В трехгорлую колбу, снабженную мешалкой, обратным холодильником и барботером, термостатированную при заданной температуре, загружали рассчитанное количество 37%-ного формалина, 30 мин барботировали сероводород (получен из расчетного количества Na2S и HCl) с образованием смеси CH2O и H2S в соотношении 2:1. Затем к реакционной массе прибавляли по каплям расчетное количество моль хитозана (0,8 г), растворенного в 100 мл 2%-ной HCl. Смесь перемешивали при 60°С в течение 24 часов. Реакционную массу нейтрализовали раствором NaOH до рН 7, модифицированный хитозан осаждали 70%-ным этанолом в соотношении по объему 1:3, добавляя по каплям концентрированный раствор NaCI. Осажденный полимер центрифугировали и трехкратно промывали 70%-ным спиртом. В результате получили 1,04 г N,S-циклосодержащего производного хитозана (I) с 50%-ной функционализацией.

Спектральные характеристики1 (1ИК-спектры получили на спектрофотометре «Specord 75IR» в суспензии в вазелиновом масле. Одномерные спектры ЯМР1H, 13C и двумерные спектры (HSQC, COSY) соединения I зарегистрированы на спектрометре “Bruker Avance 400”, внутренний стандарт - ТМС, растворитель DMSO-d6.)

N,S-циклосодержащего производного хитозана (I):

Соединение I

ИК-спектр, v, см-1: 750, 1050, 1170, 1620, 2900, 3200.

Спектр ЯМР 1Н, D2O, м.д., δ: 1.83 с (3Н, NHAc), 2.88 уш.с (1Н, Н-2); 3.45 уш.с (1Н, Н-5); 3.69 уш.с (5Н, Н-4, Н-6, Н-7); 3.82 уш.с (1H, Н-3), 4.95 уш.с (1H, Н-1), 5.45 уш.с (1Н, NH), 8.54 уш.с (2Н, NH2).

Спектр ЯМР 13С, м.д., δ: 55.9 д, (С-2); 57.8 т (С-7); 57.9 т (С-6); 71.8 д (С-3), 75.9 д (С-5), 77.7 д (С-4), 97.5 д (С-1).

где n=50-70%, m=30-50%.

Способ получения N,S-циклосодержащего полимера (I) на основе хитозана, содержащего в макроцепи 1-окса-6-тиа-4,8-диазоциклоундекановые фрагменты

взаимодействием хитозана с формальдегидом и S-содержащим соединением, отличающийся тем, что в качестве S-содержащего соединения используют сероводород, раствор формальдегида предварительно насыщают H2S и реакцию проводят при мольном соотношении хитозан - формальдегид - сероводород, равном 1:2:1, при температуре 0÷60°С в солянокислой среде в течение 24 ч.



 

Похожие патенты:

Изобретение относится к области биохимии. .

Изобретение относится к матрицам и препаратам на основе поперечно сшитых полисахаридов. .
Изобретение относится к биохимии и биотехнологии, в частности к способам получения хондроитина сульфата из тканей морских гидробионтов, таких как хрящевая ткань рыб.

Изобретение относится к биохимии. .
Изобретение относится к способу получения натриевой соли гиалуроновой кислоты, модифицированной соединениями бора в отсутствии жидкой среды. .

Изобретение относится к медицине, конкретно к получению олигомеров хитозана, обладающих биологической активностью и предназначенных для использования в пищевой промышленности и медицине.
Изобретение относится к способу очистки хондроитина сульфата и может быть использовано в пищевой и косметической промышленности и медицине

Изобретение относится к области химии биополимеров и может быть использовано в медицине, ветеринарии и космецевтике

Изобретение относится к области биохимии

Изобретение относится к выделенному имидированному биологически совместимому полимеру, функционализированному имидной группой
Предложены: применение солей бензофенантридиновых алкалоидов для получения лекарственных средств для лечения опухолей, где алкалоид находится в форме соли лютеовой, гиалуроновой или фосфатидной кислоты, соль бензофенантридиновых алкалоидов с фосфатидной кислотой или гиалуроновой кислотой и фармацевтическая композиция для лечения опухолей на ее основе. Показано повышение цитотоксической активности солей сангвинарина по изобретению по меньшей мере в два раза во всех исследованных линиях опухолевых клеток по отношению к хлоридной соли. Предполагается, что оно обусловлено их повышенным поглощением клетками опухоли. 3 н. и 9 з.п. ф-лы, 8 пр.
Изобретение относится к получению гидроксиалькильных производных полисахаридов. Способ получения 2,3-дигидроксипропилхитозана предусматривает взаимодействие хитозана с глицидолом в присутствии соляной кислоты при соотношении глицидол:хитозан:соляная кислота=(2-6):1:1 при комнатной температуре до образования геля. После чего смесь нагревают при 55-65°C в течение 12-14 часов и обрабатывают реакционную массу водой. Далее высаживают, подвергают горячей экстракции водорастворимыми спиртами или кетонами и сушат. Изобретение позволяет упростить способ получения, увеличить выход целевого продукта и повысить сорбционные свойства соединения. 1 табл., 3 пр.
Способ получения глюкан-хитозанового комплекса из дрожжевой биомассы отходов пивоваренного производства включает механическую и ультразвуковую обработку дрожжевой биомассы, разрушение белков обработкой полученной суспензии щелочными реагентами с последующим выделением целевого продукта. В качестве биомассы используют живые дрожжи Saccharomyces cerevisiae. Дрожжи предварительно замораживают до -15°С в течение 24 часов. После механического разрушения биомассу обрабатывают 15 мин при 20°C в ультразвуковой бане с частотой излучателя 35 кГц и мощностью 285 Вт. Биомассу подкисляют соляной кислотой до рН=5,5 и обрабатывают ферментным препаратом в количестве одной таблетки, содержащей липазу - 3500 Ед Ph.Eur., амилазу - 4200 Ед Ph.Eur. и протеазу - 250 Ед Ph.Eur. на 1 кг биомассы в пересчете на сухое вещество, затем удаляют липидные компоненты дрожжей. Ферментацию осуществляют при t=20-29oC в течение 30-60 мин. Разрушение белков осуществляют при 55°C на водяной бане в течение 60 мин обработкой 4%-ным водным раствором едкого натра при соотношении дрожжевой биомассы и щелочи, равном 1:4. Среду нейтрализуют и осаждают гидрозоль глюкан-хитозанового комплекса центрифугированием в течение 10 мин. Осадок высушивают при t=55°C в течение 48 часов. Изобретение позволяет повысить качество полученного комплекса и его биологическую активность. 3 пр.

Изобретение относится к биотехнологии, в частности к способам переработки шкур рыб для получения гиалуроновой кислоты и коллагена. Способ предусматривает следующее. Шкуры прудовых рыб промывают холодной проточной водой в течение 10-15 мин. Измельчают их до размера 2-3 мм. Проводят водную экстракцию при температуре 40-45°C в течение 40-50 мин при соотношении измельченные шкуры : вода равном 1:1 при периодическом перемешивании. Фильтруют, после чего жидкую фракцию сушат в распылительной сушилке при температуре продукта на выходе из сушилки 60-65°C в течение 15-25 мин с получением гиалуроновой кислоты. Твердую фракцию подвергают отбеливанию в течение 12 ч перекисно-солевым раствором, который готовят путем смешивания 1 л 3%-ной перекиси водорода и 20 г хлорида натрия. Обработку отбеленной твердой фракции 1,0-1,2%-ным раствором гидроксида натрия в течение 24 ч при температуре 20-25°C с последующей нейтрализацией полученной смеси 3%-ным раствором борной кислоты. Обработку набухшей твердой фракции раствором ферментного препарата «Панкреатин», взятым в количестве 0,5-0,6% к массе твердой фракции, в течение 1,5-2,0 ч при температуре 37-40°C. Промывку твердой фракции холодной проточной водой для удаления остатков «Панкреатина» с получением коллагена. Полученный коллаген, в зависимости от назначения, направляют на сушку в сушильные камеры с принудительной циркуляцией воздуха при температуре 18-20°C в течение 12 ч и хранение в сухие вентилируемые помещения при температуре не выше 20°C в течение 24 месяцев или замораживают до температуры минус 18 - минус 20°C и хранят при температуре минус 18 - минус 20°C в течение 24 месяцев. Высушенную в распылительной сушилке жидкую фракцию хранят при температуре 0-4°C в течение 12 месяцев или растворяют в физиологическом буферном растворе. 1 табл., 1 пр.

Изобретение относится к области органического синтеза. Способ получения не растворимого в воде серосодержащего биополимера на основе хитозана включает взаимодействие хитозана с тиометилирующим агентом, предварительно полученным насыщением раствора формальдегида газообразным H2S, при мольном соотношении хитозан : формальдегид : сероводород 1:6:4, при температуре 60°С в течение 20-25 часов. Изобретение обеспечивает получение нерастворимого в воде серосодержащего биополимера на основе хитозана, обладающего комплексообразующей активностью к ионам благородных металлов (Pd, Pt). 1 пр., 1 табл.

Изобретение относится к стабилизатору для липосомальных суспензий для осуществления направленной транспортировки физиологически активных веществ с целью повышения терапевтической активности лекарственных препаратов. Предложенный стабилизатор включает модифицированный хитозан, который получают путем модификации частиц хитозана, находящихся в эмульсии органический растворитель - вода с рН 6,0-6,5, путем воздействия сначала смесью, состоящей из карбоновой кислоты в органическом растворителе и конденсирующего агента, а затем органическим основанием, при этом в качестве карбоновых кислот используют или пальмитиновую, или стеариновую, или додекановую кислоту, в качестве конденсирующего агента - смесь из гидроксисукцинимида и алифатического карбодиимида или формальдегида и алифатического изоцианида, а в качестве органического основания - триэтиламин. Предложен эффективный стабилизатор липосомальных композиций, который может быть получен упрощенным способом. 2 н. и 6 з.п. ф-лы, 3 табл., 5 пр., 7 ил.
Наверх