Таблетка ядерного топлива

Изобретение относится к ядерной технике, в частности к конструкциям таблеток легководных реакторов (LWR), а также реакторов AGR и водно-графитовых. В LWR-реакторах используется, как правило, керамическое урандиоксидное топливо (UO2). Предлагаемая конструкция таблетки - композитная, т.е. представляет собой урандиоксидную матрицу, с расположенной в ней особым образом теплопроводящей фазой. Направление теплового потока в топливе совпадает с ориентацией теплопроводной фазы. Тепло передается монокристаллическими частицами оксида бериллия игольчатой либо пластинчатой формы, размерами 40-200 мкм, оптически прозрачными, диспергированными в урандиоксидной матрице. Изобретение позволяет повысить теплопроводность материала таблеток.

 

Изобретение относится к ядерной технике, в частности к конструкциям таблеток легководных реакторов (LWR), а также реакторов AGR и водно-графитовых.

В LWR-реакторах используется, как правило, керамическое урандиоксидное топливо (UO2). Топливо такого вида имеет один существенный недостаток, а именно низкую теплопроводность на уровне 2÷3 Вт/м·К в диапазонах температур 1000÷2000°С. Такие значения теплопроводности ограничивают интенсивность тепловыделения в активной зоне реактора. Средняя линейная плотность энерговыделения при этом составляет 15÷20 Вт/м, а средняя плотность энерговыделения - 10÷40 МВт/т. Для увеличения этих показателей теплопроводность топлива повышают введением в таблетки теплопроводящих компонентов, т.е. так же, как это делают для высокообогащенного топлива активных зон компактных транспортных реакторов.

Предлагаемая конструкция таблетки - композитная, т.е. представляет собой урандиоксидную матрицу, с расположенной в ней особым образом керамической или металлической теплопроводящей фазой, за счет чего достигается увеличение теплопроводности топлива. Тепло, передаваемое ориентированными монокристаллическими частицами, оптически прозрачными для длин волн теплового диапазона, диспергированными в урандиоксидной матрице, может передаваться как за счет механизма теплопроводности, так и за счет лучистого теплообмена через материал частиц. В качестве теплопроводящей фазы используется BeO, SiC, молибден и т.п.

Известно уран-бериллиевое топливо, изготовляемое в АО «УМЗ» для сердечников транспортных реакторов. Для изготовления таблеток указанного топлива исходными компонентами являются порошки бериллия, диоксида урана и уран. Бериллий используется как восстановитель для диоксида урана. В результате проведения процессов синтеза и спекания компонентов топливный материал состоит из нескольких фаз (Be, BeO, берилллид урана, диоксид урана). Структура этого топлива формируется на этапе спекания, когда тугоплавкая фаза (UO2) оказывается окружена непрерывной, более легкоплавкой, имеющей большую объемную долю. Непрерывная фаза содержит BeO и имеет высокую теплопроводность, что определяет, в свою очередь, высокую теплопроводность топлива в целом. Небольшой объем урансодержащей фазы в этом топливе компенсируется высоким обогащением урана по изотопу 235U, и, в итоге, содержание делящегося изотопа в таблетках достаточно для поддержания эффективной реакции деления.

Недостаток такого топлива в том, что его теплопроводность может быть высокой только при большом объемном содержании в его структуре теплопроводной фазы. Такая структура делает его непригодным как топливо для LWR-реакторов, которое состоит в основе своей только из UO2.

Стремление сохранить высокую теплопроводность топлива с одновременным уменьшением в нем количества теплопроводной фазы приводит к необходимости контролировать ее расположение для сохранения ее непрерывности. Существуют многочисленные патенты, описывающие процессы и конструкцию топлива, в которых теплопроводная фаза располагается, в итоге, на поверхности частиц или зерен UO2, образуя непрерывную сетку. Это достигается предварительным нанесением на частицы UO2 порошкообразного теплопроводного материала либо смешиванием порошка UO2 с порошкообразными компонентами, образующими между собой при спекании эвтектический расплав, смачивающий UO2 и растекающийся по его зернам. Подобные способы и конструкции описаны в патентах США: 2818605, 1/1958; 2979399, 4/1961; 3063794, 11/1962; 3211812, 10/1965; 3723581, 3/1973; 3825499, 7/1974; 3849329, 11/1974; 3862908, 1/1975; 3865746, 2/1975; 3867489, 2/1975; 3872022, 3/1975; 3879520, 4/1975; 3923933, 12/1975; 4430276, 2/1984; 5362426, 1993; 5180527, 1991; 5429775, 1992; 5255299, 1992 и Японии: 55-027939, 2/1980; 55-027941, 2/1980; 1-107193, 4/1989.

Наиболее близким аналогом для топливных таблеток, описанных в настоящем изобретении, является патент США 5180527 от 19.01.1993. Целью этого изобретения является уменьшение температуры в центре таблетки и, как следствие, снижение выделения газообразных продуктов деления (ГПД). Согласно этому патенту, таблетки ядерного топлива для LWR-реакторов состоят из спеченных зерен ядерного делящегося вещества, имеющего непрерывную фазу по границам зерен, состоящую из оксида бериллия или смеси оксида бериллия с одним из таких оксидов, как TiO2, Gd2O3, CaO, BaO, MgO, SrO, La2O3, Y2O3, Yb2O3, SiO2, Al2O3, Sm2O3, WO3, ZrO2, Li2O, МоО3, UO2, ThO2.

Недостатки этого прототипа, использующего оксид бериллия для создания теплопроводящей фазы, следующие. 1. Высокая температура спекания таблеток (2100°С), приводящая к росту зерна до 110÷160 мкм, снижает прочность керамики до минимума. 2. Очень незначительное увеличение теплопроводности, указанное в патенте (в 1,08÷1,13 раза), где большие значения соответствуют введению ВеО в твердый U-Gd раствор с изначально низким ее значением. 3. Большинство указанных в формуле оксидов (особенно 2 группы Пер. системы Менделеева) хорошо растворимы в UO2, что приведет к образованию при спекании твердых растворов и соответствующему снижению теплопроводности материала. 4. Взаимодействие ВеО с указанными оксидами приводит к образованию соединений (двойных окислов) и твердых растворов. При этом ВеО как индивидуальное соединение с высокотеплопроводной кристаллической решеткой исчезает. Этим можно объяснить такой низкий прирост теплопроводности. 5. Наличие на поверхности частиц и зерен UO2 сплошной ВеО-фазы затрудняет уплотнение UO2-фазы. 6. Декларируемая непрерывная фаза ВеО не имеет пространственной направленности, тогда как поток тепла в топливе направлен по градиенту температуры, т.е. по радиусу таблетки. Это значит, что многие поверхности теплопроводящей фазы не будут участвовать в переносе тепла. Таким образом, в данном прототипе использование ВеО неэффективно.

Задачей настоящего изобретения является повышение теплопроводности материала таблеток. Техническим результатом является создание в топливе композитной структуры.

Сущность изобретения заключается в том, что в отличие от известной таблетки, представляющей собой керамический диоксид урана с непрерывной, многофазной, теплопроводящей керамической фазой на поверхности зерен, предлагаемая конструкция представляет собой композит из урандиоксидной матрицы, содержащей ВеО в виде отдельных теплопроводящих частиц (кристаллов, осколков кристаллов), размером 40÷200 мкм, игольчатой, либо плоской (неизометрической) формы, сориентированных в направлении теплового потока, существующего в таблетке, т.е. по радиусу, содержание которых в топливе составляет 1÷10% масс.

Поставленная задача решается следующим образом. Для изготовления композита используется порошок UO2 мелкофракционного состава (фракции 45÷63 мкм и мельче). Частицы ВеО в композите имеют тот же минимальный размер (т.е. не мельче 45-63 мкм), что обеспечивает равномерность их распределения при смешивании с UO2 и ориентирование поперек направления формования. Для этого используют исходный порошок низкопрокаленного или высокопрокаленного оксида бериллия. Из порошка выделяют фракционированием нужную фракцию. После чего проводят термообработку выделенной фракции при температуре 1970÷1990°С в атмосфере азота или аргона для перекристаллизации материала и залечивания трещин в зернах. Получившийся крупнокристаллический стекловидный материал размалывают, выделяют плоские осколки фракции 45÷63 мкм и вновь подвергают термообработке для залечивания трещин либо используют без таковой. Могут быть использованы фракции ВеО в виде игл, образующиеся при перекристаллизации низкопрокаленного ВеО во влажном аргоне или водороде. Вводимое в UO2 количество ВеО в композите невелико и может быть в пределах 1-3% масс. от веса топлива. Смесь формуют и спекают обычным образом, как UO2.

Положительный эффект заключается в том, что такая конструкция, имея преимущественную ориентировку частиц теплопроводящей фазы вдоль теплового потока, обладает, за счет лучшего ее использования, более высокой теплопроводностью по сравнению с композитом без ориентировки дисперсной фазы.

Дополнительный положительный эффект проявляется в том, что материал частиц теплопроводящей фазы не имеет межзеренных границ т.к. представлен в основном осколками кристаллов, что также увеличивает его теплопроводность из-за отсутствия рассеяния фононов на границах.

Дополнительный положительный эффект проявляется также в том, что благодаря высокой оптической прозрачности ВеО в области длин волн теплового диапазона часть тепла в топливе переносится излучением, т.е. ориентированные частицы работают как световоды, что еще более повышает эффективную теплопроводность топлива.

Расчет показывает, что при 1000°С повышение теплопроводности при содержании ВеО 3% масс. по сравнению с топливом в виде UO2 будет не менее 21%. Еще больший эффект будет при введении ВеО в U-Gd топливо.

Пример осуществления

Порошок UO2 измельчается и просеивается через сито для выделения частиц заведомо меньшего размера, чем частицы ВеО. Из ВеО низкообожженного сорта выделяется крупная фракция частиц 200-500 мкм, загружается в печь и перекристаллизовывается в атмосфере влажного аргона при 1980°С до размера зерна не менее 200÷500 мкм. Перекристаллизованный ВеО измельчается, из него выделяются осколки размером 45÷63 мкм и смешиваются с порошком UO2. Смесь формуется в сырые таблетки плотностью 5,20÷5,80 г/см3, которые спекают в восстановительной атмосфере при 1750°С 1÷10 часов. Получившиеся таблетки имеют равномерную структуру и размер зерна урановой матрицы 5÷25 мкм.

Таблетка ядерного керамического топлива, состоящая из вещества ядерного топлива (UO2) и вещества теплопроводной фазы, распределенного в нем, отличающаяся тем, что направление теплового потока в топливе совпадает с ориентацией теплопроводной фазы, представляющей собой оптически прозрачные частицы оксида бериллия из монокристаллического материала игольчатой либо пластинчатой формы, размерами 40÷200 мкм, содержание которых в топливе составляет 1÷10 мас.%.



 

Похожие патенты:
Изобретение относится к области порошковой металлургии, в частности к способу формования диоксида урана с легирующей добавкой. .

Изобретение относится к области ядерной энергетики, в частности к способам, применяемым при получении шихты из смеси порошков ядерного топлива и материала матрицы для прессования керметных стержней твэлов ядерного реактора.

Изобретение относится к оборудованию для прессования изделий из порошков, а именно для укладки таблеток после прессования в лодочку для их последующего спекания, и может найти применение в порошковой металлургии, химической и других отраслях промышленности, в частности, может быть использовано на предприятиях изготовления таблетированного топлива из диоксида урана (UO2) для тепловыделяющих элементов (ТВЭЛ) ядерных реакторов.

Изобретение относится к способу изготовления тепловыделяющих элементов ядерного реактора, к контейнеру для осуществления этого способа и к тепловыделяющим элементам, изготовленным с помощью этого способа.

Изобретение относится к атомной промышленности и предназначено для использования на предприятиях по изготовлению керамических топливных таблеток на основе диоксида урана с добавлением выгорающего поглотителя нейтронов.

Изобретение относится к способу получения порошкового материала для изготовления гранул ядерного топлива. .
Изобретение относится к ядерной технике, в частности к процессу производства и контроля качества керамического ядерного топлива для тепловыделяющих элементов ядерных реакторов.

Изобретение относится к изготовлению плотного материала для производства ядерного топлива в виде гранул или таблеток или иной формы. .

Изобретение относится к ядерной технике, в частности к технологии изготовления оксидного ядерного топлива для тепловыделяющих элементов АЭС. .

Изобретение относится к способу получения ядерного топлива на основе оксида, карбида и/или оксикарбида урана и по меньшей мере одного актинида и/или лантанида. Способ включает следующие стадии: стадию получения исходного раствора, представляющего собой азотнокислый раствор, содержащий указанный актинид и/или лантанид в форме нитратов актинида и/или лантанида и уран в форме гидроксидного комплекса уранилнитрата; стадию пропускания указанного раствора через катионообменную смолу, содержащую карбоксильные группы, с помощью которых смола сорбирует актинид и/или лантанид в катионной форме и уран в форме уранила; стадию термообработки указанной смолы для получения указанного топлива. Технический результат - исключение операций порошковой металлургии для объединения урана по меньшей мере с одним актинидом и/или лантанидом. 13 з.п. ф-лы, 7 ил.

Изобретение относится к ядерной технике, в частности к изготовлению таблетированного топлива для тепловыделяющих элементов, и с наибольшей эффективностью может быть использовано при изготовлении из диоксида урана крупнозернистых топливных таблеток высокой ядерной чистоты с улучшенной и регулируемой микроструктурой. Технический результат направлен на повышение стабильности размера зерна таблетированного UO2-топлива, упрощение процесса его изготовления и повышение ядерной чистоты таблеток. Способ получения таблеток ядерного керамического топлива с регулируемой микроструктурой включает введение в готовый пластификатор или в воду на этапе приготовления пластификатора водных растворов растворимых в воде соединений алюминия и кремния в качестве легирующих добавок, формирование однородной смеси, перемешивание полученной смеси с диоксидом урана или смесью диоксида урана с выгорающим поглотителем и/или закисью-окисью урана, приготовление из полученной шихты пресс-порошка, прессование таблеток, их высокотемпературное спекание и шлифование. Предпочтительно в качестве растворимых в воде соединений алюминия и кремния использовать нитрат алюминия и силикат натрия. В частном случае используют выгорающий поглотитель в количестве 0,3-15,0 мас.% от массы диоксида урана. В частном случае в качестве выгорающего поглотителя используют оксид эрбия или оксид гадолиния. В частном случае используют закись-окись урана в количестве не более 30 мас.% от массы диоксида урана. 4 з.п. ф-лы, 5 ил.

Изобретение относится к радиохимической технологии и может быть использовано для получения порошка диоксида урана, идущего на изготовление керамических таблеток уранового оксидного ядерного топлива. Способ получения порошка диоксида урана заключается в нагревании смеси раствора уранилнитрата и гидразингидрата, взятого в двухкратном мольном избытке по отношению к уранилнитрату, до температуры 80 - 95°C в реакторе с гидрозатвором, последующей температурной выдержке полученной суспензии уранилгидразината до образования гидратированного диоксида урана, фильтрации и прокалке гидратированного диоксида урана в неокисляющей атмосфере при температуре равной 280°C. Изобретение обеспечивает упрощение способа получения порошка диоксида урана, а также понижение давления и понижение температуры процесса реагентной денитрации. 4 з.п. ф-лы, 4 ил., 4 пр.

Изобретение относится к способам изготовления ядерного топлива. Способ получения пористого топлива, содержащего уран и по меньшей мере один младший актинид. Способ содержит следующие последовательные этапы: а) этап уплотнения в виде таблеток смеси порошков, содержащей оксид урана и по меньшей мере один оксид младшего актинида, при этом по меньшей мере часть оксида урана находится в виде октаоксида триурана U3O8, а другая часть находится в виде диоксида урана UO2; b) этап восстановления по меньшей мере части октаоксида триурана U3O8 в диоксид урана UO2. Технический результат - стабильность уровня пористости под облучением. 20 з.п. ф-лы, 3 ил.

Настоящее изобретение относится к реакционной камере для экзотермического материала. Камера содержит многоуровневую структуру, включающую в себя по меньшей мере: приемник (1) для хранения упомянутого материала (10), соответствующий нижнему уровню; средний уровень, содержащий химически активную загрузку (4); верхний уровень, содержащий крышку. Хранимый материал представляет собой, в частном случае, карбид плутония и/или урана. Химически активная загрузка (4) содержит по меньшей мере один карбонат щелочноземельного металла, с тем чтобы поглощать тепло, выделяемое при реакции окисления упомянутого материала. При этом упомянутый карбонат щелочноземельного металла разлагается под действием тепла в эндотермической реакции. Технический результат - снижение рисков химической опасности при хранении соединений урана и/или плутония. 14 з.п. ф-лы, 5 ил.

Изобретение относится к атомной промышленности, к изготовлению таблетированного топлива. Способ изготовления топлива включает смешивание порошка UO2, обогащенного ураном U-235 до 5% масс., с порошком U3O8 в количестве до 15% масс.; предварительное смешивание смеси оксидов урана с сухим связующим - стеаратом цинка до 0,3% масс. и порообразователем - азодикарбонамидом до 1% масс.; уплотнение, виброизмельчение и виброгранулирование подготовленной смеси; окончательное смешивание - гомогенизирование с сухим связующим - стеаратом цинка, так чтобы суммарное количество стеарата цинка с учетом ранее введенного не превышало 0,5% масс. Способ обладает универсальностью, пригоден для изготовления топливных таблеток по «сухой» схеме с использованием любых порошков UO3, полученных по АДУ-процессу. Технический результат - увеличение прочности прессовок, достижение пониженных значений термической стабильности, повышение прочности спеченных таблеток. 2 з.п. ф-лы, 2 табл.

Изобретение относится к области ядерной энергии, в частности к микротвэлам ядерного реактора. Микротвэл ядерного реактора содержит топливную микросферу на основе оксидного топлива и защитное покрытие, включающее первый от топливной микросферы низкоплотный слой толщиной 84-110 мкм, второй плотный слой толщиной 30-36 мкм, третий слой карбида кремния и четвертый высокоплотный слой толщиной 36-42 мкм. Все слои выполнены из карбида кремния, при этом первый слой имеет плотность 0,9-1,2 г/см3, второй слой имеет плотность 2,5-2,9 г/см3, третий слой имеет плотность 1,5-2,2 г/см3 и толщину 7-13 мкм, а четвертый слой имеет плотность 3,2-3,3 г/см3. Технический результат: получение микротвэла ядерного реактора с повышенным ресурсом эксплуатации (увеличение глубины выгорания топлива) за счет снижения давления газообразных продуктов деления на защитные слои. 5 ил.

Изобретение относится к способу получения пористого топлива, содержащего уран, необязательно плутоний и необязательно по меньшей мере один младший актинид, который включает следующую последовательность стадий: a) стадию уплотнения смеси, включающей первый тип агломерата, содержащий оксид урана в виде диоксида урана UO2, необязательно оксид плутония и необязательно по меньшей мере один оксид младшего актинида, и второй тип агломерата, содержащий оксид урана в виде октаоксида триурана U3O8, необязательно оксид плутония и необязательно по меньшей мере один оксид младшего актинида; b) стадию восстановления уплотненной смеси в восстановительной среде с целью восстановления всего или части октаоксида триурана U3O8 в диоксид урана UO2, при этом второй тип агломерата получают перед стадией уплотнения с помощью последовательности определенных операций. Техническим результатом является исключение деградации порообразующих веществ на стадии смешивания предшественников топлива, возможность регулирования пористости как в качественном, так и в количественном соотношении. 11 з.п. ф-лы, 5 ил., 2 пр.

Изобретение относится к нитридному ядерному топливу. Нитридное топливо представляет собой таблетку из материала, содержащего однофазный твердый раствор элементов, содержащий по меньшей мере нитрид америция (Am). Указанный материал имеет плотность, составляющую примерно 90% от теоретической плотности. Изобретение также относится к способу получения указанного ядерного топлива с применением стадий смешения исходных порошков, спекания порошков с получением плотной таблетки и последующей термической обработки. Технический результат – создание топлива для реакторов IV поколения, обеспечивающего снижение количества отходов реакторов; высокая теплопроводность топлива, высокая температура плавления, широкая область взаимной растворимости веществ топлива. 21 з.п. ф-лы, 2 ил.

Изобретение относится к способам изготовления керамического ядерного топлива с использованием легирования. Cпособ легирования порошков UO2, включающий дозирование в UO2 порошкового легирующего соединения (добавки), операцию приготовления порции смеси из UO2 с порошковым легирующим соединением, изготовление пресс-порошка, формование прессовок и их термообработку. В качестве легирующего соединения используются алюминий- или(и) кремнийсодержащее вещество с температурой плавления до 200°С, температуры плавления и испарения которого лежат ниже температуры его разложения. Изобретение позволяет повысить эффективность легирования и сократить время спекания таблеток. 1 з.п. ф-лы, 2 табл., 2 ил.
Наверх