Способ получения порошка диоксида урана

Изобретение относится к радиохимической технологии и может быть использовано для получения порошка диоксида урана, идущего на изготовление керамических таблеток уранового оксидного ядерного топлива. Способ получения порошка диоксида урана заключается в нагревании смеси раствора уранилнитрата и гидразингидрата, взятого в двухкратном мольном избытке по отношению к уранилнитрату, до температуры 80 - 95°C в реакторе с гидрозатвором, последующей температурной выдержке полученной суспензии уранилгидразината до образования гидратированного диоксида урана, фильтрации и прокалке гидратированного диоксида урана в неокисляющей атмосфере при температуре равной 280°C. Изобретение обеспечивает упрощение способа получения порошка диоксида урана, а также понижение давления и понижение температуры процесса реагентной денитрации. 4 з.п. ф-лы, 4 ил., 4 пр.

 

Изобретение относится к радиохимической технологии и может быть использовано для получения порошка диоксида урана, идущего на изготовление керамических таблеток уранового оксидного ядерного топлива для сборки тепловыделяющих элементов ядерных реакторов атомных электростанций.

Известен способ получения диоксида урана [RU 2158971 С1, МПК G21C 3/62], по которому проводят гидролиз гексафторида урана, экстракцию урана из азотнокислого раствора 30% раствором трибутилфосфата в органическом разбавителе, его реэкстракцию в водный кислый раствор, осаждения полиураната аммония аммиачной водой при pH 6,6-8, с последующей фильтрацией, сушкой-прокалкой при 450-600°C и восстановлением в водороде при 680-720°C.

К недостаткам данного метода можно отнести многостадийность и сложность процесса, необходимость использования высоких температур для разложения полученного прекурсора в производстве диоксида урана.

По другому способу [RU 2296106 С2, МПК C01G 43/025] диоксид урана получают обработкой 25%-ным раствором аммиака предварительно приготовленного водного раствора уранилнитрата с содержанием урана 50-100 г/дм3 с поддержанием значения pH не менее 6,6 при осаждении полиураната аммония. Далее следуют промежуточные стадии (фильтрация, сушка) с получением порошка полиураната аммония, являющегося прекурсором, термическое высокотемпературное разложение которого приводит к получению диоксида урана.

Существенным недостатком этого способа является его многостадийность и необходимость использования высоких температур для разложения полученного прекурсора.

Разработан способ получения диоксида урана [Заявка ФРГ, N 2693977, МПК С01С 43/02, 1978], пригодного для изготовления таблетированного ядерного топлива, методом осаждения пероксида урана. Для получения пероксида урана через раствор уранилнитрата (~ 100 г/л по урану) пропускают смесь аммиака и воздуха для нейтрализации избыточной кислотности до pH среды ~ 2, затем в раствор добавляют до ~ 20% мас. водного раствора перекиси водорода и молярного соотношения уран:перекись водорода 1:1,5-3. Пероксид урана после отделения от маточного раствора прокаливают при температуре 500-800°C с последующим восстановлением до диоксида урана при 550-750°C.

Известен способ получения диоксида урана [RU 2415084, МПК C01G 43/025], согласно которому при добавлении к азотнокислому раствору уранилнитрата восстановителя - хлорида гидроксиламина и аммиачной воды до pH 7 - получают, в зависимости от температурных условий, малорастворимые соединения: моногидрат диаквадигидроксиламинат уранила [UO2(H2O)2(NH2O)2]·H2O или безводный дигидроксиламинат уранила UO2(NH2O)2, термическое разложение которых приводит к образованию UO2 в инертной атмосфере в температурном интервале 200-400°C. Восстановителем U(VI) до U(IV) при термическом разложении указанного соединения служит координированный с ионом уранила лиганд гидроксиамина.

Описанный подход к получению диоксида урана из раствора уранилнитрата являлся по своей сути способом многостадийной термической реагентной денитрации с образованием маточного раствора, подлежащего утилизации тем или иным способом.

К недостатку данного способа получения двуокиси урана можно отнести необходимость использования инертной атмосферы при прокаливании, использование процессов осаждения, фильтрации, сушки и прокаливания, что значительно усложняет процесс получения конечного продукта.

Главный недостаток перечисленных выше способов состоит в том, что их первый многостадийный этап направлен на получение соединения - прекурсора, из которого только на второй стадии высокотемпературным термолизом получают целевой продукт - порошок диоксида урана.

Наиболее близким к предлагаемому способу и выбранным в качестве прототипа является способ [RU 2404925 С2, МПК C01G 43/01], при котором оксиды урана получают нагреванием смеси раствора уранилнитрата и аминоуксусной кислоты (глицин) при температуре 180-220°С в автоклавном режиме. Глицин берется в количестве 90-140% от стехиометрии. При этом, в зависимости от соотношения уранилнитрат:аминокислота, могут образовываться UO3, U3O8 или UO2.

Недостатком метода является требование точного контроля соотношения реагентов, относительно высокая температура проведения процесса в водном растворе, обуславливающая проведение процесса в автоклавном режиме, а также существенное влияние температуры на состав получаемых оксидов.

Задачей, на решение которой направлено предлагаемое изобретение, является упрощение способа получения порошка диоксида урана.

Техническим результатом является понижение температуры процесса реагентной денитрации и существенное понижение давления при проведении процесса.

Для достижения технического результата в способе получения порошка диоксида урана путем нагревания раствора уранилнитрата осуществляют нагревание смеси раствора уранилнитрата и гидразингидрата, взятого в двухкратном мольном избытке по отношению к уранилнитрату, до температуры 80-95°С в реакторе с гидрозатвором с последующей температурной выдержкой полученной суспензии уранилгидразината до образования гидратированного диоксида урана, фильтрацию и прокалку гидратированного диоксида урана в неокисляющей атмосфере при температуре равной 280°С.

В частном варианте температурную выдержку полученной суспензии осуществляют в течение 30 часов при конвективном способе подвода тепла к реактору.

В другом частном варианте температурную выдержку полученной суспензии осуществляют в течение одного часа при использовании энергии микроволнового излучения для подвода тепла к реактору.

В другом частном варианте прокалку гидратированного диоксида урана осуществляют в инертной атмосфере.

В другом частном варианте прокалку гидратированного диоксида урана осуществляют в восстановительной атмосфере.

Термическая денитрация уранилнитрата при его взаимодействии с гидразингидратом проходит непосредственно в жидкой фазе и приводит к получению в водном растворе сразу гидратированного диоксида урана, исключая промежуточные стадии получения каких-либо прекурсоров.

В результате термолиза аморфной и объемной суспензии уранилгидразината, образующейся в водном азотнокислом растворе уранилнитрата при его взаимодействии с гидразингидратом, получают непосредственно в растворе гидратированный диоксид урана (UO2·nH2O).

Процесс термолиза осуществляют способом конвективного подвода тепла, либо применяли энергию микроволнового излучения. Последний способ значительно сократил продолжительность термической денитрации и ускорил образование целевого продукта.

После отделения UO2·nΗ2O от маточного раствора кристаллический UO2 в неокисляющей атмосфере получают при температуре равной 280°С, либо переводят на воздухе в U3O8 при 570-800°С.

Двухкратный мольный избыток гидразингидрата необходим для полного перевода урана в гидратированный диоксид урана, дальнейшее увеличение мольного избытка гидразингидрата на технический результат не влияет, увеличение мольного избытка гидразингидрата экономически нецелесообразно.

При температурах ниже 80°С не происходит количественного перехода аморфной и объемной суспензии уранилгидразината в гидратированный диоксид урана (UO2·nH2O), при температурах выше 95°С проведение процесса экономически нецелесообразно.

При температурах ниже 280°С не происходит количественного перехода гидратированного диоксида урана (UO2·nH2O) в кристаллический диоксид урана UO2, при температурах выше 280°С проведение процесса экономически нецелесообразно.

Сущность заявляемого изобретения поясняется следующими чертежами.

На фиг. 1 показаны спектры растворов U, полученных растворением осадков UO2, выделенных из аморфной суспензии уранилгидразината: в 4 моль/л HCl (1); в смеси 6 моль/л ΗΝO3 с 0,1 моль/л HF (2).

На фиг. 2 показана рентгенограмма образца гидратированного UO2.

На фиг. 3 показаны дериватограммы (кривые TG и DTA), снятые для образца UO2, полученного термической денитрацией уранилнгидразината.

На фиг. 4 показана рентгенограмма гидратированного UO2 после его нагревания до 800°С на воздухе и перехода его в U3O8.

Примеры осуществления способа

Пример 1

В водный 0,1 Μ азотнокислый раствор уранилнитрата, содержащий 200 г/л U и находящийся в реакционном сосуде, добавляют гидразингидрат Ν2Η5ΟΗ, взятый с двукратным мольным избытком относительно урана. Реакционный сосуд с образовавшейся аморфной суспензией уранилгидразината, помещенный в нагревательное устройство и соединенный с водным гидрозатвором, выдерживают при температуре 95°С до тех пор, пока общее количество урана в твердой фазе, выделяемой из суспензии (определяется радиометрически), не становится равным содержанию U(IV) в этом осадке (определяется спектрофотометрически - фиг. 1), при конвективном способе подвода тепла к реактору это происходит примерно за 30 часов.

Осадок отделяют от маточного раствора, высушивают при температуре 60±5°С и анализируют рентгенофазовым и термогравиметрическим методами. Полученные данные, приведенные на фиг. 2-4, однозначно свидетельствуют о получении порошка диоксида урана непосредственно в растворе в процессе денитрационного термолиза уранилнитрата при взаимодействии с гидразингидратом.

Пример 2

Способ получения порошка диоксида урана осуществляют, как в примере 1, процесс реагентной денитрации проходит при температуре 80°С в течение одного часа при использовании энергии микроволнового излучения.

Таким образом, применяя микроволновое излучение, можно кардинально повысить эффективность разработанного процесса термической реагентной денитрации уранилнитрата с использованием гидразингидрата, сократив время его проведения, а следовательно, и энергетических затрат на его осуществление.

Пример 3

Способ получения порошка диоксида урана осуществляют, как в примере 1, процесс реагентной денитрации ведут при 80°С в течение 48 часов при конвективном подводе тепла до образования гидратированного диоксида урана.

Пример 4

Способ получения порошка диоксида урана осуществляют, как в примере 1, процесс получения кристаллического порошка диоксида урана проводится в неокисляющей атмосфере при температуре равной 280°С, до получения кристаллического порошка диоксида урана.

Предложенный способ позволит существенно снизить температуру процесса реагентной денитрации, существенно понизить давление и упростить аппаратурное оформление схемы получения порошка диоксида урана.

1. Способ получения порошка диоксида урана путем нагревания раствора уранилнитрата, отличающийся тем, что осуществляют нагревание смеси раствора уранилнитрата и гидразингидрата, взятого в двухкратном мольном избытке по отношению к уранилнитрату, до температуры 80-95°C в реакторе с гидрозатвором с последующей температурной выдержкой полученной суспензии уранилгидразината до образования гидратированного диоксида урана, фильтрацию и прокалку гидратированного диоксида урана в неокисляющей атмосфере при температуре равной 280°C.

2. Способ по п.1, отличающийся тем, что температурную выдержку полученной суспензии осуществляют в течение 30 часов при конвективном способе подвода тепла к реактору.

3. Способ по п.1, отличающийся тем, что температурную выдержку полученной суспензии осуществляют в течение одного часа при использовании энергии микроволнового излучения для подвода тепла к реактору.

4. Способ по п.1, отличающийся тем, что прокалку гидратированного диоксида урана осуществляют в инертной атмосфере.

5. Способ по п.1, отличающийся тем, что прокалку гидратированного диоксида урана осуществляют в восстановительной атмосфере.



 

Похожие патенты:

Изобретение относится к ядерной технике, в частности к изготовлению таблетированного топлива для тепловыделяющих элементов, и с наибольшей эффективностью может быть использовано при изготовлении из диоксида урана крупнозернистых топливных таблеток высокой ядерной чистоты с улучшенной и регулируемой микроструктурой.

Изобретение относится к способу получения ядерного топлива на основе оксида, карбида и/или оксикарбида урана и по меньшей мере одного актинида и/или лантанида. Способ включает следующие стадии: стадию получения исходного раствора, представляющего собой азотнокислый раствор, содержащий указанный актинид и/или лантанид в форме нитратов актинида и/или лантанида и уран в форме гидроксидного комплекса уранилнитрата; стадию пропускания указанного раствора через катионообменную смолу, содержащую карбоксильные группы, с помощью которых смола сорбирует актинид и/или лантанид в катионной форме и уран в форме уранила; стадию термообработки указанной смолы для получения указанного топлива.
Изобретение относится к ядерной технике, в частности к конструкциям таблеток легководных реакторов (LWR), а также реакторов AGR и водно-графитовых. .
Изобретение относится к области порошковой металлургии, в частности к способу формования диоксида урана с легирующей добавкой. .

Изобретение относится к области ядерной энергетики, в частности к способам, применяемым при получении шихты из смеси порошков ядерного топлива и материала матрицы для прессования керметных стержней твэлов ядерного реактора.

Изобретение относится к оборудованию для прессования изделий из порошков, а именно для укладки таблеток после прессования в лодочку для их последующего спекания, и может найти применение в порошковой металлургии, химической и других отраслях промышленности, в частности, может быть использовано на предприятиях изготовления таблетированного топлива из диоксида урана (UO2) для тепловыделяющих элементов (ТВЭЛ) ядерных реакторов.

Изобретение относится к способу изготовления тепловыделяющих элементов ядерного реактора, к контейнеру для осуществления этого способа и к тепловыделяющим элементам, изготовленным с помощью этого способа.

Изобретение относится к атомной промышленности и предназначено для использования на предприятиях по изготовлению керамических топливных таблеток на основе диоксида урана с добавлением выгорающего поглотителя нейтронов.

Изобретение относится к способу получения порошкового материала для изготовления гранул ядерного топлива. .
Изобретение относится к способу получения диоксида урана в виде зерен сферической и неправильной формы. Способ включает растворение при интенсивном перемешивании оксида урана UO3 или UO2(NO3)2×6H2O в органической кислоте, предпочтительно в аскорбиновой кислоте, обработку полученного аскорбиново-гидрокси-уранового золя и термообработку полученного геля при температуре 550°C и скорости нагрева 5°C/мин в воздушной среде до образования U3O8, после чего полученный оксид восстанавливают в атмосфере водорода и/или аргона, предпочтительно в атмосфере водорода, при температуре 1100°C до образования диоксида урана в виде зерен сферической или неправильной формы.

Изобретение относится к порошковой металлургии и может быть использовано для получения исходного сырья для изготовления нитридного ядерного топлива. Способ получения порошка нитрида урана включает нагрев металлического урана, который осуществляют в вакуумируемой реакционной емкости при остаточном давлении 10-1÷10-2 мм рт.ст.
Изобретение относится к области неорганической химии, в частности к металлургии урана и производству соединений урана, и может быть использовано в химической и ядерных технологиях.

Изобретение относится к способу приготовления оксалатов актиноидов. Способ включает осаждение одного актиноида или соосаждение большего числа актиноидов в форме частиц оксалата в псевдоожиженном слое приведением в контакт водного раствора, содержащего актиноид или актиноиды, с водным раствором щавелевой кислоты или соли щавелевой кислоты и сбор частиц оксалата.
Изобретение относится к области ядерной энергетики и может быть использовано в технологии производства спеченных керамических топливных таблеток с выгорающим поглотителем для ядерных реакторов.
Изобретение относится к способу получения сферических частиц горючего или ядерного топлива из оксида группы тяжелых металлов урана, плутония или их смесей. .

Изобретение относится к ядерной энергетике и касается технологии получения смешанного диоксида урана и плутония (UO 2-PuO2) для изготовления ядерного топлива. .

Изобретение относится к ядерной энергетике и касается технологии получения оксидов урана для изготовления ядерного топлива для атомных станций. .

Изобретение относится к области ядерной технологии и может найти применение на предприятиях по изготовлению таблетированного ядерного топлива для энергетических реакторов.

Изобретение относится к радиохимической промышленности и ядерной энергетике, направлено на получение смешанного диоксида (U,Pu)O2 и может быть использовано для изготовления ядерного смешанного уран-плутониевого МОКС-топлива реакторов ВВЭР-1000 и реакторов на быстрых нейтронах (БН-600, БН-800) атомных станций. Способ получения твердого раствора диоксида плутония в матрице диоксида урана включает взаимодействие нитратных комплексов урана и плутония с относительным содержанием их в растворе 95-70 и 5-30 мас.% соответственно с гидразингидратом с получением смешанного аморфного соединения урана и плутония, выдержку смешанного аморфного соединения урана и плутония в маточном растворе при температуре 80-90°C в течение не менее 3,5 часов до получения осадка мелкодисперсного порошка гомогенно смешанного гидратированного диоксида урана и плутония, отделение осадка от маточного раствора и его нагрев до температуры 280-300°C до образования целевого продукта. Изобретение обеспечивает экономически целесообразный, несложный и менее энергоемкий способ получения твердого раствора диоксида плутония в матрице диоксида урана. 1 з.п. ф-лы, 6 ил., 2 пр.

Изобретение относится к радиохимической технологии и может быть использовано для получения порошка диоксида урана, идущего на изготовление керамических таблеток уранового оксидного ядерного топлива. Способ получения порошка диоксида урана заключается в нагревании смеси раствора уранилнитрата и гидразингидрата, взятого в двухкратном мольном избытке по отношению к уранилнитрату, до температуры 80 - 95°C в реакторе с гидрозатвором, последующей температурной выдержке полученной суспензии уранилгидразината до образования гидратированного диоксида урана, фильтрации и прокалке гидратированного диоксида урана в неокисляющей атмосфере при температуре равной 280°C. Изобретение обеспечивает упрощение способа получения порошка диоксида урана, а также понижение давления и понижение температуры процесса реагентной денитрации. 4 з.п. ф-лы, 4 ил., 4 пр.

Наверх