Фазовый способ пеленгации

Использование: изобретение относится к радиопеленгации, а именно к фазовому способу пеленгации. Сущность: в фазовом способе пеленгации принимают сигналы на две антенны, удаленные друг от друга на расстояние d, основан на усилении и ограничении, для первого фазового канала перемножают входную смесь сигналов с первой антенны с сигналом гетеродина, выделяют смесь сигналов на промежуточной частоте, снова перемножают выделенную смесь сигналов со смесью сигналов со второй антенны, выделяют смесь сигналов на второй промежуточной частоте с учетом взаимных комбинационных составляющих, центральная частота которых равна частоте гетеродина, режектируют частоту гетеродина, аналогичное преобразование сигналов производят для второго фазового канала с тем отличием, что сигнал гетеродина поворачивают по фазе на π/2, чтобы пеленгационная характеристика обладала нечетной симметрией, затем выделяют взаимные комбинационные частоты на выходе каждого фазового канала и для каждой пары комбинационных составляющих на одной частоте осуществляют измерение разности фаз Δφνλ, при этом решение о наличии комбинационной составляющей принимают при превышении уровнем сигнала на выходе фильтра заранее установленного порога. Технический результат: повышение разрешающей способности по частоте при одновременном приеме радиосигналов нескольких источников радиоизлучения, повышение надежности и точности определения пеленга на источники сигнала. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к радиотехнике, в частности к радиопеленгации, и может быть использовано для совмещенного поиска и пеленгования по угловым координатам с высокой точностью множества работающих передатчиков, одновременно попадающих в текущую полосу приема. Способ основан на использовании фазовой информации об угловых координатах источников компонент-спутников взаимодействия сигнала и помехи, а не на частоте подстановки, так как именно на частоте подстановки налагаются сигналы всех источников, что приводит к ложному пеленгу. Поэтому в предлагаемом решении именно сигналы на частоте подстановки режектируются, а сигналы на комбинационных частотах выделяются.

Совершенствование систем связи, локации и навигации, использующих сложные сигналы с повышенной скрытностью, с одной стороны, и непрерывное возрастание загрузки используемых диапазонов частот, с другой, усложняет проблему их эффективного обнаружения и пеленгования с высокой точностью.

В настоящее время получили распространение методы параметрического спектрального оценивания случайных процессов, а также линейной комбинации действительных или комплексных экспонент [1], позволяющие достичь очень высокого разрешения сигналов, в том числе гармонических, по частоте. Однако эти результаты можно получить только при весьма большой величине отношения сигнал/шум в анализируемой выборке на входе устройства обработки (5-10 дБ и более), в противном случае точность оценок оказывается неудовлетворительной, к тому же возникает большое число ложных отсчетов.

Известен способ широкополосной пеленгации [2], при котором из выходных сигналов каждого элемента антенной решетки выделяются цифровые сигналы, характеризующие спектры принятых сигналов, и для каждой выбранной частоты в полосе приема, используя фазу сигналов, производится прямое вычисление пространственного ряда Фурье, дискретно описывающего угловой спектр мощности на выбранной частоте. После восстановления углового спектра на всех частотах определяется пеленг любого источника, излучающего сигналы на любой из частот в пределах текущей полосы приема. Этот способ обладает низким быстродействием при определении азимутального пеленга.

В качестве способа-прототипа выбран фазовый способ пеленгации [3], основанный на приеме сигналов на две антенны, удаленные друг от друга на расстояние d, усилении и ограничении, после чего в фазовом дискриминаторе производится сравнение фаз сигналов, прошедших два канала. Фазовый сдвиг определяется соотношением

,

где λ - длина волны, α - направление на пеленгуемый источник излучения.

Недостатком такого способа является невозможность разрешения по угловым координатам с высокой точностью множества работающих передатчиков, одновременно попадающих в текущую полосу приема.

Предлагаемый подход базируется на использовании компонент-спутников взаимодействия сигнала и помехи, которые при традиционном рассмотрении принципов построения фазового пеленгатора с мгновенным за счет синхронного гетеродирования обзором широкой полосы частот радиолокационного диапазона рассматривались как мешающие. Использование данного подхода обеспечивает совместное решение взаимно противоречивых проблем мгновенного обзора широкой области частот радиолокационного диапазона и разрешения по угловым координатам многоточечного источника излучения сигналов.

Комбинационные составляющие, возникающие при взаимодействии на нелинейных элементах сигналов, принятых на разнесенные антенны от одного и того же источника излучения, определим как собственные комбинационные компоненты. Комбинационные составляющие, образуемые взаимодействием на нелинейных элементах сигналов от различных излучателей, определим как взаимные комбинационные компоненты.

Для обеспечения мгновенного обзора по частоте предполагается реализация фазового пеленгатора с подстановкой частоты гетеродина. При обычном подходе применение такой схемы, сводящей все сигналы из полосы обзора на частоту подстановки, препятствует обеспечению условий разрешения. То есть требования мгновенного обзора широкой полосы частот и разрешения сигналов в принципе являются противоречивыми. Задача становится особенно сложной, если учесть, что при применении подстановки частоты гетеродина число комбинационных частот на выходе фазового дискриминатора перемножающего типа растет пропорционально четвертой степени от числа пеленгуемых источников. Комбинационные частоты содержат все сочетания начальных фаз сигналов их производящих и поэтому результирующая пеленгационная характеристика может оказаться существенно деформированной. В этом случае задача определения угловых координат каждого источника излучения в многоцелевой ситуации становится еще более трудно разрешимой [4, 5].

Решение предполагается исходя из рассмотрения тонкой фазовой структуры сигнала на выходах фазовых каналов. Новый подход предполагает обзор по взаимным комбинационным частотам на промежуточной частоте. Граница полосы определяется максимальным значением комбинационных частот. Наиболее простой вариант, обеспечивающий мгновенный обзор по промежуточной частоте, имеем на основе фильтрового метода, при котором сохраняются информативные комбинационные составляющие и режектируются остальные.

Задача изобретения - повышение разрешающей способности по частоте при одновременном приеме радиосигналов нескольких источников радиоизлучения.

Поставленная задача достигается тем, что в фазовом способе пеленгации, основанном на приеме сигналов на две антенны, удаленные друг от друга на расстояние d, усилении и ограничении, для первого фазового канала перемножают входную смесь сигналов с первой антенны с сигналом гетеродина, выделяют смесь сигналов на промежуточной частоте, снова перемножают выделенную смесь сигналов со смесью сигналов со второй антенны, выделяют смесь сигналов на второй промежуточной частоте с учетом взаимных комбинационных составляющих, центральная частота которых равна частоте гетеродина, режектируют частоту гетеродина, аналогичное преобразование сигналов производят для второго фазового канала с тем отличием, что сигнал гетеродина поворачивают по фазе на π/2, чтобы пеленгационная характеристика обладала нечетной симметрией, затем выделяют взаимные комбинационные частоты на выходе каждого фазового канала и для каждой пары комбинационных составляющих на одной частоте осуществляют измерение разности фаз Δφνλ, при этом решение о наличии комбинационной составляющей принимают при превышении уровнем сигнала на выходе фильтра заранее установленного порога, на основе измеренных разностей фаз исходя из преобразования сигналов в фазовых каналах, получают систему линейных алгебраических уравнений Δφν+Δφλ=Δφνλ, , , решая которую однозначно определяют разность фаз для каждого сигнала. В фазовом способе пеленгации используют сетку фильтров по взаимным комбинационным частотам на промежуточной частоте, при этом граница полосы определяется максимальным значением комбинационных частот. В фазовом способе пеленгации используют генератор с кварцевой стабилизацией и используют кварцевые фильтры для режектирования сигналов на частоте гетеродина и выделения взаимных комбинационных составляющих.

Технический результат изобретения заключается в увеличении разрешающей способности по частоте при одновременном приеме радиосигналов нескольких источников радиоизлучения, повышении надежности и точности определения пеленга на источники сигналов.

На чертеже представлена схема радиоприемного устройства, обеспечивающего работу предлагаемого способа. Рассмотрим предлагаемый способ (чертеж). Принимаемая смесь сигналов на антенны 1 и 2 через широкополосные входные фильтры 3 и 4, полоса пропускания которых охватывает всю полосу обзора, подаются на первый 5 и второй 6 преобразователи частоты соответственно, на второй вход первого преобразователя частоты 5 подается сигнал с гетеродина 7, на второй вход второго преобразователя 6 подается сигнал с выхода фазовращателя 8 на π/2, на вход которого подается сигнал гетеродина 7, выход первого преобразователя частоты 5 соединен с входом первого фильтра промежуточной частоты 9, выход которого соединен с первым входом третьего преобразователя частоты 11, второй вход которого соединен с выходом входного фильтра 3, а выход - с входом первого режекторного фильтра 13, настроенного на частоту гетеродина, выход первого режекторного фильтра 13 соединен с входом первого блока полосовых фильтров 15, каждый полосовой фильтр которого настроен на отдельную комбинационную частоту так, что набор всех полос пропускания фильтров перекрывает всю рассматриваемую полосу обзора, затем сигналы с выходов каждого полосового фильтра первого блока фильтров 15 поступают на первые входы фазовых дискриминаторов блока 17, при этом блоки 1, 3, 5, 9, 11, 13 и 15 образуют первый фазовый канал, выход второго преобразователя частоты 6 соединен с входом второго фильтра промежуточной частоты 10, выход которого соединен с первым входом четвертого преобразователя частоты 12, второй вход которого соединен с выходом входного фильтра 4, а выход - с входом второго режекторного фильтра 14, настроенного на частоту гетеродина, выход второго режекторного фильтра 14 соединен с входом второго блока полосовых фильтров 16, каждый полосовой фильтр которого настроен на отдельную комбинационную частоту так, что набор всех полос пропускания фильтров перекрывает всю рассматриваемую полосу обзора, затем сигналы с выходов каждого полосового фильтра второго блока фильтров 16 поступают на вторые входы фазовых дискриминаторов блока 17, при этом блоки 2, 4, 6, 10, 12, 14 и 16 образуют второй фазовый канал, затем сигналы, несущие информацию о разности фаз составляющих на комбинационных частотах, с выходов фазовых дискриминаторов блока 17 поступают на вход индикатора 18, который осуществляет формирование системы линейных алгебраических уравнений и ее последующее решение, и, следовательно, обеспечивает раздельный пеленг каждого источника излучения из смеси сигналов.

Поясним предлагаемый способ. Сигналы, принятые антеннами 1 и 2 и поступающие через широкополосные фильтры 3 и 4 на входы преобразователей частоты 5 и 6, определим соответственно в виде:

где , - амплитуда сигнала, принятого от ν-го источника на антенну 1, - амплитуда сигнала, принятого от ν-го источника на антенну 2, ων - частота ν-того источника излучения, и - начальные фазы для ν-того сигнала, принятого разнесенными антеннами 1 и 2 фазового радиопеленгатора. Запишем сигнал гетеродина 7 в форме

где .

Разность фаз для ν-го источника определяется выражением

Сигнал, выделяемый фильтром 10 при перемножении сигналов UA1 и UГ в преобразователе частоты 5, определим как

На преобразователь частоты 6 сигнал UГ с гетеродина 7 поступает через фазовращатель 8, смещающий фазу сигнала на π/2, и, следовательно, можем для сигнала на выходе фазовращателя 8 записать:

.

Сигнал на выходе фильтра преобразователя частоты 6 при перемножении сигналов UA2 и UГ - определим как

Сигнал на выходе третьего преобразователя частоты 11 первого фазового канала при перемножении сигналов UA1 и U2 определим как

Сигнал на выходе четвертого преобразователя частоты 12 второго фазового канала при перемножении сигналов UA2 и U1 определим как

Из вида сигналов Uk1 и Uk2 видно, что n составляющих двойной суммы при совпадении индексов λ=ν (собственные комбинационные компоненты) содержат начальные фазы , на одной частоте - частоте гетеродина, что вызовет существенные искажения пеленгационной характеристики. Поэтому целесообразно осуществлять режектирование смеси сигналов на частоте гетеродина. Остальные n2-n слагаемых, которые являются взаимными комбинационными составляющими, содержат фазы в виде для Uk1 и для Uk2, ν, , ν≠λ.

Выделение взаимных комбинационных составляющих на частотах Ωνλ с помощью блоков фильтров 27 и 28 для обоих фазовых каналов и измерение для каждой пары разностей фаз на каждой комбинационной частоте с помощью блока фазометров 29 дает Δφνλ=Δφν+Δφλ. При этом Δφνλ=Δφλν. Следовательно, для однозначного разрешения получаемой системы уравнений достаточно использовать половину из всех возможных комбинационных составляющих, лежащих либо выше, либо ниже частоты гетеродина. В таком случае число уравнений будет равно n(n-1)/2, а число неизвестных - n. Таким образом, при n≥3 полученная система линейных уравнений имеет однозначное решение, которое позволяет получить раздельный пеленг для каждого источника излучения.

Источники информации

1. Марпл-мл. С.Л. Цифровой спектральный анализ и его приложения. М.: Мир, 1990.

2. US, патент, 4626859, кл. G01S 5/04, 1986 г.

3. Космические радиотехнические комплексы. Под ред. С.И.Бычкова. М.: Сов. радио, 1967. С.130-134.

4. Золотарев И.Д., Березовский В.А. Фазовый пеленгатор со схемой подстановки частоты гетеродина при работе по множественной цели, Омск: ОмГТУ, Омский научный вестник, 2009 г., №3 (83) - С.260-264.

5. Zolotarev I.D., Berezovskiy V.A., Privalov D.D. Signal Analysis at the Phase Discriminator Output of the Phase Direction Finder Circuit with the Frequency Substitution. - International Conference on Actual Problems of Electronic instrument Engineering Proceedings, APEIE-2010. - Novosibirsk: NSTU, September 22-24, 2010, V.1. - P.18-22.

1. Фазовый способ пеленгации, основанный на приеме сигналов на две антенны, удаленные друг от друга на расстояние d, усилении и ограничении, отличающийся тем, что для первого фазового канала перемножают входную смесь сигналов с первой антенны с сигналом гетеродина, выделяют смесь сигналов на промежуточной частоте, снова перемножают выделенную смесь сигналов со смесью сигналов со второй антенны, выделяют смесь сигналов на второй промежуточной частоте с учетом взаимных комбинационных составляющих, центральная частота которых равна частоте гетеродина, и режектируют частоту гетеродина, аналогичное преобразование сигналов производят для второго фазового канала с тем отличием, что сигнал гетеродина поворачивают по фазе на π/2, чтобы пеленгационная характеристика обладала нечетной симметрией, затем выделяют взаимные комбинационные частоты на выходе каждого фазового канала и для каждой пары комбинационных составляющих на одной частоте осуществляют измерение разности фаз Δφνλ, при этом решение о наличии комбинационной составляющей принимают при превышении уровнем сигнала на выходе фильтра заранее установленного порога, на основе измеренных разностей фаз, исходя из преобразования сигналов в фазовых каналах, получают систему линейных алгебраических уравнений Δφν+Δφλ=Δφνλ, , , решая которую однозначно определяют разность фаз для каждого сигнала.

2. Фазовый способ пеленгации по п.1, отличающийся тем, что используют сетку фильтров по взаимным комбинационным частотам на промежуточной частоте, при этом граница полосы определяется максимальным значением комбинационных частот.

3. Фазовый способ пеленгации по п.1, отличающийся тем, что используют генератор с кварцевой стабилизацией и используют кварцевые фильтры для режектирования сигналов на частоте гетеродина и выделения взаимных комбинационных составляющих.



 

Похожие патенты:

Изобретение относится к области радионавигации, а именно к определению местоположения подвижного объекта. .

Изобретение относится к измерительной технике и может быть использовано для пассивного обнаружения и пеленгования систем связи, локации и управления, использующих радиосигналы с расширенным спектром.

Изобретение относится к области ракетно-космической техники и может быть использовано для повышения эффективности работы систем наблюдения за космической обстановкой.

Изобретение относится к радиотехнике, в частности к радиопеленгации, и может быть использовано в средствах радиомониторинга и пеленгования. .

Изобретение относится к области радиолокации и может быть использовано в радиолокаторах поиска и слежения. .

Изобретения предназначены для определения пеленга и угла места источника априорно неизвестного сигнала. Достигаемый технический результат - сокращение временных затрат на оценивание пространственных параметров сигналов - азимута и угла места. Сущность заявляемого способа заключается в последовательном синхронном преобразовании высокочастотных сигналов одновременно со всех N антенных элементов (АЭ) в цифровую форму, одновременном измерении в каждом частотном поддиапазоне на совпадающих интервалах времени комплексных спектров пар сигналов для всех используемых в обработке N·(N-1)/2 пар АЭ, определении свертки комплексно-сопряженых спектров, одновременном получении разности фаз радиосигналов Δφ1,h,изм(fν) для всех N·(N-1)/2 пар АЭ и каждого частотного поддиапазона путем преобразования Фурье, формировании и запоминании эталонных разностей фаз сигналов для всех возможных направлений прихода радиосигнала, вычислении значения функции дисперсии невязок разности фаз по всем угловым параметрам, формировании для каждой используемой пары АЭ на основе значений Δφ1,h,изм(fν) конечного семейства конусов возможных направлений на источник и набора непересекающихся окружностей направлений, запоминании точек пересечения окружностей направлений от разных пар АЭ, определении значений функции дисперсии невязок разностей фаз F(fν) для точек пересечения окружностей направлений и минимальной среди них minH(fν), локальной оптимизации minH(fν) путем сравнения с ближайшими к ней значениями H(fν), определении наиболее вероятного направления прихода радиосигнала по наименьшему значению minH(fν)опт. В пеленгаторе, реализующем способ, дополнительно введены блок формирования конусов и окружностей направлений, блок определения точек пересечения окружностей направлений и блок поиска глобального экстремума, соединенные определенным образом между собой и остальными элементами заявленного пеленгатора. 2 н.п. ф-лы, 8 ил., 1 табл.

Изобретения относятся к области радиотехники и могут быть использованы для определения местоположения объектов угломерно-дальномерным способом с летно-подъемного средства (ЛПС). Достигаемый технический результат - повышение точности определения координат объектов. Технический результат достигается благодаря более точному измерению вектора направления на объект V П i j →   в системе координат видеокамеры, уменьшению случайных ошибок оценивания за счет многократного определения координат объектов по серии кадров, а также благодаря учету особенностей рельефа местности в районе измерений. 2 н. и 3 з.п. ф-лы, 26 ил.

Изобретение относится к радиотехнике, а именно к области пеленгации, и может быть использовано для пеленгации (измерения азимутов) и измерения углов места ионосферных сигналов в условиях приема как одного, так и двух лучей в широком частотном диапазоне. Достигаемый технический результат - сокращение времени определения угловых параметров двулучевого ионосферного сигнала. Указанный результат достигается тем, что формируется новая антенная система с минимальной базой. По максимальному значению двумерной диаграммы направленности U ( α y ' , β y ' ) антенной системы с минимальной базой оценивается устойчивое однолучевое, в условиях приема двух лучей, значение азимута α y ' и угла места β y ' . это решение далее уточняется двулучевым решением U ^ ( α 1 ' , β 1 ' , α 2 ' , β 2 ' ) в пределах ограниченной четырехмерной площадки α 1 ' = α y ' ± 10   г р а д у с о в , α 2 ' = α y ' ± 10   г р а д у с о в , β 1 ' = β y ' ± 10   г р а д у с о в , β 2 ' = β y ' ± 10   г р а д у с о в . Двумерная диаграмма направленности U ( α y ' , β y ' ) формируется по определенному вычислительному выражению. Областью определения устойчивого однолучевого решения α y ' , β y ' является интервал азимутов 0÷360 градусов и интервал углов места 0÷90 градусов. Устойчивость оценок азимута и угла места и широкий частотный диапазон обеспечиваются использованием при формировании двумерной диаграммы направленности антенной системы разности фаз двух соседних вибраторов ψn+1-Ψn. 10 ил.

Группа изобретений может быть использована для определения пространственных параметров радиоизлучений. Достигаемым техническим результатом является разработка малогабаритных амплитудных радиопеленгаторов (AP) при сохранении в значительной степени их высоких точностных характеристик. Технический результат достигается благодаря учету информации о поле сигнала в пространственно разнесенных точках. Первый (двухканальный) вариант реализации AP содержит последовательно соединенные восьмиэлементную антенную систему (AC), антенный коммутатор, двухканальное радиоприемное устройство (РПУ), двухканальный аналого-цифровой преобразователь (АЦП), первый и второй вычислители, сумматор, блок поиска максимума, третий вычислитель, блок усреднения, блок индикации и тактовый генератор с соответствующими связями. Второй (восьмиканальный) вариант реализации AP содержит последовательно соединенные восьмиэлементную AC, восьмиканальное РПУ, восьмиканальное АЦП, первый вычислитель, сумматор, блок поиска максимума, второй вычислитель, блок усреднения, блок индикации и тактовый генератор с соответствующими связями. 2 н. и 7 з.п. ф-лы, 9 ил., 1 табл., Приложение.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Достигаемый технический результат - увеличение помехоустойчивости устройства. Указанный результат достигается тем, что устройство содержит магнитную первую и вторую антенны, размещенные взаимно перпендикулярно, восемь усилителей, три фильтра, три квадратора, сумматор, третью антенну, пять пороговых блоков, персональную электронно-вычислительную машину (ПЭВМ или микропроцессор), блок системы единого времени (GPS или Глонасс), блок связи с абонентами, схему ИЛИ, таймер, две схемы И, счетчик, четыре цифроаналоговых преобразователя, три калибратора, формирователь, тактовый генератор, пять аналого-цифровых преобразователей. Все перечисленные средства определенным образом соединены между собой, при этом третья антенна выполнена магнитной и размещена перпендикулярно первой и второй антеннам, пороговые блоки выполнены с управлением по порогу, фильтры выполнены с управлением по полосе пропускания, усилители выполнены с управлением по полосе фазе и чувствительности, таймер выполнен с управлением по длительности выходного сигнала. 1 ил.

Изобретение относится к антенной технике, а именно к антенным системам с электронным управлением лучом и применением кольцевых цифровых фазированных антенных решеток (ЦФАР) в мобильных и стационарных средствах связи. Способ формирования диаграммы направленности двухкольцевой цифровой фазированной антенной решетки включает: цифровую обработку СВЧ сигнала, формирование управляющих сигналов в соответствии с данными о требуемой ДН и передачу излучателям возбуждающих сигналов с амплитудно-фазовым распределением, определенным в соответствии с выбранным критерием, амплитуды Аnm и фазы φnm возбуждающих сигналов определяют, минимизируя функцию F среднеквадратического отклонения формируемой диаграммы направленности R(φ) от заданного распределения Е(φ) поля излучения антенной решетки, характеризующегося наименьшим уровнем боковых лепестков при данной ширине основного лепестка, при этом величина амплитуды Аnm не превышает 1. Техническим результатом является формирование диаграммы направленности с требуемым уровнем боковых лепестков. 3 ил.

Изобретение относится к области радиотехники и может быть применено в системах моноимпульсной радиолокации и радиопеленгации, использующих антенную решетку и цифровую обработку сигналов. Достигаемый технический результат изобретения - повышение точностных характеристик и быстродействия, вплоть до определения угла прихода сигнала по единственной его реализации. Для достижения технического результата по первому варианту способа, до приема сигналов осуществляют моделирование процесса их приема и обработки, при котором используют весовую функцию Хэмминга, обеспечивающую соответствующий уровень боковых лепестков и далее определяемого значения угла смещения, ширину рабочей зоны пеленгации не менее двукратной ширины диаграммы направленности парциального канала по уровню половинной мощности, в процессе моделирования определяют на основе весовой функции и параметров антенной решетки конкретный вид функций, параметрически зависящих от угла смещения, разлагают нечетную функцию, описывающую пеленгационную характеристику, по нечетным степеням текущего угла в ряд Маклорена, определяют предварительное значение угла смещения, вычисляют окончательное значение угла смещения, использованную при моделировании весовую функцию и определенное в результате моделирования значение угла смещения используют при формировании диаграмм направленности антенной решетки, получают значение сигнала рассогласования и вычисляют значение угла прихода сигнала источника радиоизлучения соответствующим образом. Для достижения технического результата по второму варианту определяют окончательное значение угла смещения как результат решения задачи, обеспечивающий соответствие пеленгационной характеристики кубической функции с отклонением только в седьмом и более высоких порядках разложения, далее использованную при моделировании весовую функцию и определенное в результате моделирования значение угла смещения используют при формировании диаграмм направленности антенной решетки, приеме и обработке сигнала, получая значение сигнала рассогласования, после чего вычисляют значение угла прихода сигнала источника радиоизлучения определенным образом. Примером реализации способов по первому и второму вариантам является обзорный моноимпульсный амплитудный суммарно-разностный пеленгатор с использованием антенной решетки и цифровой обработки сигналов, выполненный определенным образом. 3 н.п. ф-лы, 6 ил.

Изобретение относится к области радиотехники и может быть применено при одновременном измерении двух угловых координат (УК) цели в системах моноимпульсной радиолокации и радиопеленгации. Достигаемый технический результат - сокращение вычислений и времени одновременного измерения двух УК цели при высокой точности измерения, с ошибкой не более 1% ширины диаграммы направленности (ДН). Для достижения технического результата до приема сигналов осуществляют моделирование процесса приема и обработки с учетом использования антенной решетки с раскрывом прямоугольной формы, при котором осуществляют факторизацию двумерной весовой функции (ВФ) W(x,y)=Wx(x)Wy(y), исключающую при такой форме раскрыва влияние значения одной измеряемой координаты на процесс измерения другой координаты в азимутальной и угломестной плоскостях и обеспечивающую факторизацию двумерных ДН каналов Fm(ϑ,ϕ)=Fmθ(ϑ)Fmϕ(ϕ), где - номер парциального канала приема, и зависимость двумерной пеленгационной характеристики (ПХ) только от измеряемой координаты Sϑ(ϑ,ϕ,ϑ0)=Sϑ(ϑ,ϑ0), Sϕ(ϑ,ϕ,ϕ0)=Sϕ(ϕ,ϕ0), причем одномерными ВФ являются функции Хэмминга Wx(x)=0,08+0,92cos2(πх/2), -1≤х≤1 и Wy(y)=0,08+0,92cos2(πy/2), -1≤y≤1, обеспечивающие уровень боковых лепестков не выше минус 40 дБ и ширину рабочей зоны по каждой УК не менее двукратной ширины ДН парциального канала по уровню половинной мощности, или другие ВФ, обеспечивающие не больший, чем функции Хэмминга, уровень боковых лепестков и не меньший размер рабочей зоны, в процессе моделирования с учетом весовых функций, параметров АР и упомянутой факторизации определяют конкретный вид функций F1ϑ(ϑ), F2ϑ(ϑ), F3ϕ(ϕ), F4ϕ(ϕ) и Sϑ(ϑ,ϑ0), Sϕ(ϕ,ϕ0), параметрически зависящих от углов смещения ϑ0 и ϕ0, разлагают нечетные функции Sϑ(ϑ,ϑ0) и Sϕ(ϕ,ϕ0), описывающие полученные в результате факторизации одномерные ПХ, по нечетным степеням углов ϑ и ϕ в ряды Маклорена. 4 ил.
Наверх