Способ управления процессом каталитического риформинга

Изобретение относится к области нефтеперерабатывающей промышленности, в частности к способам управления процессом каталитического риформинга при получении высокооктанового бензина. Изобретение касается способа, включающего в себя регулирование температурного профиля последовательности реакторов, расчет приращения октанового числа на каждом реакторе, температуру на вводе сырья в реакторы, прогнозируемое время пробега катализатора, оценку относительной активность катализатора и подбор скорости изменения дезактивации катализатора, которая прогнозирует одинаковую (с заданной точностью) продолжительность эксплуатации катализатора по каждому реактору до наступления критических значений дезактивации, при этом осуществляют регулирование режима таким образом, чтобы время межрегенерационного пробега катализатора по реакторам было максимальным при условии обеспечения заданных значений показателей качества, а достижение требуемых температур сырья на входах в реакторы определяют из заданных условий. Технический результат - оперативная оптимизация технологического режима без использования лабораторных анализов на основе вычислительной процедуры оценки степени активности катализатора и качества целевого продукта. 1 ил., 1 пр.

 

Изобретение относится к области нефтеперерабатывающей промышленности, в частности к способам управления процессом каталитического риформинга при получении высокооктанового бензина, реализуемого на последовательности реакторов с периодической остановкой процесса на регенерацию или замену катализатора, который обеспечивает оптимизацию технологического режима процесса по технико-экономическим показателям.

К настоящему времени разработаны и используются на практике несколько методов управления режимом каталитического риформинга. В основе вычислительной процедуры лежит модель расчета регулируемого показателя качества по измеряемым параметрам. Отличительными особенностями в подобных системах управления является различие в подходах к определению критерия при оптимизации технологического режима, расчета управляющих воздействий и степени их влияния на технико-экономические показатели.

Известен способ управления процессом каталитического риформинга, где главным критерием является максимизация выхода продукта - высокооктанового бензина при условии обеспечения его заданного качества (Нефть, газ и нефтехимия за рубежом, Каталитический риформинг, фирма «Комбастшн Энджиниринг Симкон», 1989, №3, с.105).

Другим способом предусматривается регулирование средневзвешенной температуры на входе в реактор (СТВР) и расчетного профиля температуры на входе с целью обеспечении заданного ОЧ катализата (Нефть, газ и нефтехимия, Каталитический риформинг, фирма «ПРОФИМЭТИКС» 1989, №3, с.105). При расчете параметров технологического режима используется система оперативной оптимизации на основе собственной запатентованной технологии фирмы-разработчика.

Наиболее близким по технической сущности к предлагаемому способу управления процессом каталитического риформинга является способ управления на основе вычисления октанового числа (ОЧ) по модели и поддержание ОЧ на заданном уровне изменением средневзвешенной температуры на входе в реактор (Нефть, газ и нефтехимия, Каталитический риформинг, фирма «Эплайд Отомейшн», 1989, №3, с.104). В математической модели ОЧ является функцией скорости подачи сырья, средневзвешенной температуры на входе в реактор и группового химического состава сырья. Скорость дезактивации катализатора поддерживается на постоянном уровне компенсацией давления процесса. Расчет скорости дезактивации катализатора выполнен с использованием средневзвешенной температуры на входе в реактор или данных анализа катализатора.

Недостатком данного способа является то, что применение данного подхода предполагает использование на этапе принятия решений по выбору режима риформирования данных лабораторных анализов состава сырья и качества катализатора, что вводит временное запаздывание в процесс управления, при этом обязательным является наличие системы отбора проб катализатора.

Предлагаемое изобретение решает задачу оперативной оптимизации технологического режима без использования лабораторных анализов на основе вычислительной процедуры оценки степени активности катализатора и качества целевого продукта.

Сущность изобретения заключается в том, что в способе управления процессом каталитического риформинга, включающем регулирование температурного профиля последовательности реакторов, согласно изобретению, по моделям рассчитывают приращение октанового числа на каждом реакторе, температуру на вводе сырья в реакторы, прогнозируемое время пробега катализатора, оценивают относительную активность катализатора и подбирают такую скорость изменения дезактивации катализатора, которая прогнозирует одинаковую (с заданной точностью) продолжительность эксплуатации катализатора по каждому реактору до наступления критических значений дезактивации, при этом осуществляют регулирование режима таким образом, чтобы время межрегенерационного пробега катализатора по реакторам было максимальным при условии обеспечения заданных значений показателей качества, а достижение требуемых температур сырья на входах в реакторы определяют из условий

J = min i = 1, n ¯ ( Θ i ) max                                                            ( 1 ) ,

1 n S i S з а д                                                                         ( 2 )

T i T i +                                                                                ( 3 ) ,

Θ r max Θ r min ε                                                                 ( 4 ) ,

где J - критерий оптимизации;

S i о ч . - приращение октанового числа на реакторе i, i = 1, n ¯ ,

n - количество реакторов на установке;

Sзад - заданное приращение октанового числа по установке;

Ti - температура сырья на входе в реактор i, °C;

T i + - верхняя граница допустимой температуры на входе в реактор, °C;

Θ r max , Θ r min - наибольшее и наименьшее прогнозируемое время пробега катализатора по реакторам установки, суток;

r max = arg [ max i = 1, n ¯ ( Θ i ) ] , r min = arg [ min i = 1, n ¯ ( Θ i ) ]

rmin - номер реактора с минимальным расчетным временем пробега;

rmax - номер реактора с максимальным расчетным временем пробега;

Θi - прогнозируемое время пробега катализатора для реактора i;

ε - допустимая разница работы катализатора в реакторах с наибольшим и наименьшим прогнозируемым временем в сутках.

В качестве определяющих показателей используются прогнозируемое время пробега катализатора, приращение ОЧ на каждом реакторе, температура ввода сырья в реактор. Определение качества катализата (ОЧ) проводится расчетным путем по моделям, имеющим линейную структуру и область адекватности в определенном временном диапазоне эксплуатации катализатора.

Параметрическая идентификация модели проводится периодически при увеличении систематической погрешности определения ОЧ по модели относительно данных лабораторных анализов более чем на заданную величину.

На чертеже приведена принципиальная схема системы управления, реализующая способ управления процессом каталитического риформинга.

Способ управления процессом каталитического риформинга осуществляют следующим образом.

Сигналы о значениях температуры потоков на выходе из печей 1 и реакторов риформинга 2 от датчиков ТЕ 3 и значение расхода катализата II от преобразователя FE 4 поступают в вычислительное устройство 5. Сюда же задатчиками 6 вводят информацию об объеме (V) загруженного катализатора в реакторы. В вычислительном устройстве 5 рассчитываются по моделям приращение ОЧ и активность катализатора в каждом реакторе, информация поступает в блок оптимизации температурного профиля процесса 7. В блоке оптимизации 7 на основе действующих ограничений на параметры режима (G), задаваемых блоком 8, требуемого качества катализата (Sзад), определяемого задатчиком 9, и рассчитанных в вычислительном устройстве 5 значений приращения ОЧ (S) и степени активности катализатора (A) по определенному алгоритму производится расчет требуемых температур продуктов на входе в реакторы с учетом ограничений (1)-(4). Рассчитанные температуры поступают в качестве задания на соответствующий регулятор ТС температуры продукта 10, который воздействует на клапан-регулятор на линии подачи топлива III в печь 1 нагрева сырья. Периодически рассчитанные по модели значения ОЧ сравниваются в блоке параметрической идентификации моделей 11 с результатами лабораторных анализов катализата (B), и проводится подстройка коэффициентов моделей (C).

Пример реализации предлагаемого способа управления процессом каталитического риформинга.

Вычисление ОЧ проводят для катализата каждого реактора по моделям. Модели расчета ОЧ для каскада трех реакторов имеют вид

Δ S i = b i τ + c i A i + d i T i ,                                         ( 5 )

где ΔSi - приращение октанового числа риформата при прохождении i-го реактора;

bi, ci, di - параметры модели;

Ti - температура продукта на входе в реактор i;

A i = T i в х T i в ы х - параметр, определяющий активность катализатора;

τ = V i Q - время контакта продукта с катализатором;

Vi - объем катализатора, загруженного в i-й реактор, м3;

Q - производительность установки, м3/ч.

Расчет оптимальной температуры ввода продукта в реактор ведут в следующей последовательности:

1. Определяется прогнозируемое время пробега катализатора по каждому реактору установки путем:

- вычисления изменения активности катализатора за время ΔΘ для каждого из реакторов Δ A i = d i c i Δ T i в х i , Δ T i в х = T i в х = ( Θ + Δ Θ ) T i в х ( Θ ) , где

T i в х ( Θ + Δ Θ ) , T i в х ( Θ ) - температура на входе реактора i в период времени Θ, Θ+ΔΘ;

- вычисления скорости снижения активности катализатора на интервале времени ΔΘ для каждого из реакторов ν i = Δ A i Δ Θ ,

- вычисление времени работы катализатора для каждого из реакторов Θ i max = A i т е р м . A i ν i . Здесь A i т е р м . - критическое допустимое значение активности катализатора i-го реактора i, i = 1, n ¯ .

2. Проверяется условие (4). Если оно не выполняется, то для реактора с минимальным временем пробега rmin повышают температуру продукта на входе в реактор на величину ΔT, T r min ( k ) = T r min ( k 1 ) + Δ T , для реактора с максимальным временем пробега rmax температуру продукта снижают на величину ΔT, T r min ( k ) = T r min ( k 1 ) + Δ T и возвращаются к шагу 1.

Если условие (4) выполняется, то переходят к шагу 3.

3. Рассчитывается приращение октанового числа по каскаду реакторов по модели (5) и проверяется выполнение условия (2).

Если условие (2) не выполняется, то для каждого из реакторов процесса дают приращение температуры продукта на величину ΔТ и проверяют выполнение ограничения (3). Если ограничение (3) выполняется, то возвращаются к шагу 1. Если ограничение (3) не выполняется, то утверждается, что активность катализатора в одном из реакторов достигла критического значения и установку рекомендуется остановить на регенерацию катализаторов.

Если условие (2) выполняется, то определенные в результате процедуры температуры для ввода продуктов в каждый из реакторов отвечают условиям (1)-(4), и эти значения температур определяют оптимальную скорость снижения активности катализатора.

Инициализация процедуры оптимизации режима может проводиться по нарушению условия (2) либо через заданный интервал времени.

Предлагаемое изобретение решает задачу оперативной оптимизации технологического режима без использования лабораторных анализов на основе вычислительной процедуры оценки степени активности катализатора и качества целевого продукта. При этом обеспечиваются требования минимальной жесткости режима, минимальный запас на качество получаемого продукта, вычисление показателя качества катализата, оценка состояния катализатора.

Способ управления процессом каталитического риформинга, включающий регулирование температурного профиля последовательности реакторов, отличающийся тем, что по моделям рассчитывают приращение октанового числа на каждом реакторе, температуру на вводе сырья в реакторы, прогнозируемое время пробега катализатора, оценивают относительную активность катализатора и подбирают такую скорость изменения дезактивации катализатора, которая прогнозирует одинаковую (с заданной точностью) продолжительность эксплуатации катализатора по каждому реактору до наступления критических значений дезактивации, при этом осуществляют регулирование режима таким образом, чтобы время межрегенерационного пробега катализатора по реакторам было максимальным при условии обеспечения заданных значений показателей качества, а достижение требуемых температур сырья на входах в реакторы определяют из условий
J = min i = 1, n ¯ ( Θ i ) max ,
1 n S i S з а д ,
T i T i + ,
Θ r max Θ r min ε ,
где J - критерий оптимизации;
S i о ч . - приращение октанового числа на реакторе i, i = 1, n ¯ ;
n - количество реакторов на установке;
Sзад - заданное приращение октанового числа по установке;
Ti - температура сырья на входе в реактор i, °C;
T i + - верхняя граница допустимой температуры на входе в реактор, °C;
Θ r max , Θ r min - наибольшее и наименьшее прогнозируемое время пробега катализатора по реакторам установки, суток;
r max = arg [ max i = 1, n ¯ ( Θ i ) ] , r min = arg [ min i = 1, n ¯ ( Θ i ) ] ;
rmin - номер реактора с минимальным расчетным временем пробега;
rmax - номер реактора с максимальным расчетным временем пробега;
Θi - прогнозируемое время пробега катализатора для реактора i;
ε - допустимая разница работы катализатора в реакторах с наибольшим и наименьшим прогнозируемым временем в сутках.



 

Похожие патенты:

Изобретение относится к технике управления процессом получения хлористого калия при формировании раствора вводом воды в осветленный насыщенный раствор, поступающий со стадии растворения сильвинитовых руд и осветления жидкой фазы, на установках вакуум-кристаллизации.

Изобретение относится к приборостроению, в частности к области контроля параметров условий труда, и может быть использовано для контроля и управления уровнями факторов производственной среды.

Изобретение относится к технологическим процессам осветления и обесцвечивания воды и может быть использовано для регулирования процессов коагуляции и фильтрования на сооружениях, работающих по схеме: смеситель - контактный осветлитель.

Изобретение относится к способам выделения и очистки капролактама из смеси с водой и примесями. .

Изобретение относится к новому способу управления процессом дистилляции капролактама, заключаемуся в управлении процессом трехступенчатой дистилляции капролактама в присутствии щелочи, включающим сборники, испарители, паровые эжекторы, кондесаторы при подаче сырого капролактама, пара и отводе очищенного капролактама, конденсата, дополнительно содержащим насосы подачи сырого капролактама и щелочи с датчиками расхода, клапаном и фильтром; насадочную колонну обезвоженного капролактама для первого испарителя; конденсаторы второго испарителя; испаритель тяжелокипящих примесей, соединенный с третьим испарителем; насос подачи обезвоженного капролактама с датчиком расхода и клапаном на второй испаритель; насос подачи неочищенного капролактама с датчиком расхода и клапаном на третью ступень; насос подачи очищенного капролактама с датчиком расхода, клапаном и фильтрами; насос подачи отходов на следующие стадии; вакуумметры; датчики температуры, давления с клапанами на подаче пара в испарители, установленные на трубопроводах; задают расход сырого капролактама и щелочи на испарители, предельные значения температуры, остаточного давления, давления греющего пара в испарители и пароэжекторы, определяют текущие отклонения указанных параметров и воздействуют соответственно на клапаны подачи пара в испарители, на пароэжекторы и направляют очищенный капролактам далее, а отходы на нейтрализацию.

Изобретение относится к области нефтепереработки. .

Изобретение относится к области производства синтетических каучуков эмульсионной полимеризации, а именно к стадии выделения каучуков из латексов с применением коагулянтов.

Изобретение относится к вариантам способа ароматизации углеводородов. .

Изобретение относится к способам транспортировки твердых частиц из зоны одного давления в зону с другим давлением. .

Изобретение относится к нефтехимии, в частности к переработке бензиновых фракций. .

Изобретение относится к усовершенствованному способу получения уксусной кислоты, включающему стадии: взаимодействия метанола с монооксидом углерода в реакционной среде, содержащей воду, йодистый метил и метилацетат в присутствии катализатора карбонилирования на основе металла VIII группы; выделения продуктов указанной реакции в летучую фазу продукта, содержащую уксусную кислоту, и менее летучую фазу; дистиллирования указанной летучей фазы в аппарате дистилляции для получения очищенного продукта уксусной кислоты и первого верхнего погона, содержащего йодистый метил и ацетальдегид; конденсации, по меньшей мере, части указанного верхнего погона; измерения плотности указанного сконденсированного первого верхнего погона; определение относительной концентрации йодистого метила, ацетальдегида или обоих в первом верхнем погоне на основании измеренной плотности; и регулирования, по меньшей мере, одного регулирующего технологического параметра, связанного с дистилляцией указанной летучей фазы, в качестве ответной реакции на указанную относительную концентрацию. Изобретение также относится к способу получения уксусной кислоты, включающему стадии: взаимодействия метанола с монооксидом углерода в реакционной среде, содержащей воду и йодистый метил в присутствии катализатора карбонилирования на основе металла VIII группы; осуществления паражидкостного разделения в указанной реакционной среде для получения паровой фазы, содержащей уксусную кислоту, йодистый метил, ацетальдегид и воду, и жидкой фазы; дистиллирования указанной паровой фазы в аппарате дистилляции для получения очищенного продукта уксусной кислоты и, по меньшей мере, первого верхнего погона, содержащего ацетальдегид и йодистый метил; конденсации указанного первого верхнего погона; экстракции указанного первого верхнего погона с водой для получения рафината, содержащего йодистый метил и водный экстракт; измерения плотности, по меньшей мере, одного потока, выбранного из группы, состоящей из указанного первого верхнего погона, указанного рафината и указанного водного экстракта; определение относительной концентрации йодистого метила, ацетальдегида или обоих в по меньшей мере указанном верхнем погоне, указанном рафинате и указанном водном экстракте на основании измеренной плотности; и регулирования, по меньшей мере, одного регулирующего технологического параметра, связанного с или дистилляцией указанной паровой фазы или экстракцией указанного первого верхнего погона, в качестве ответной реакции на указанную относительную концентрацию. Способ управления процессом разделения с целью удаления перманганатных восстановленных соединений из технологического потока в ходе процесса карбонилирования метанола, включающий стадии измерения плотности потока, содержащего ацетальдегид и йодистый метил, и вычисление относительных концентраций ацетальдегида и йодистого метила в потоке, позволяет регулировать параметры процесса дистилляции или экстракции на основе измеренной плотности или рассчитанных из нее одной или нескольких относительных концентраций. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к области добычи природного газа, в частности к ведению процесса осушки газа с использованием автоматизированных систем управления технологическими процессами (АСУ ТП) установок комплексной подготовки газа (УКПГ) газоконденсатных месторождений Крайнего Севера (газодобывающих комплексов). Осуществляют контроль средствами АСУ ТП расхода газа по каждой i-й технологической нитке газодобывающего комплекса, его сравнение с предельно допустимыми значениями и автоматическое поддержание расхода с соблюдением условия . Оценивают гидравлические сопротивления абсорберов каждой технологической линии подготовки газа, и те абсорберы, которые только что прошли ревизию, и их работоспособность восстановлена в полном объеме, эксплуатируют в режиме максимальной производительности, а те абсорберы, которые находятся в эксплуатации достаточно длительное время, эксплуатируют в щадящем режиме, для чего АСУ ТП определяет значение поправки на производительность каждого абсорбера AQ; с учетом параметров, которые невозможно и/или нецелесообразно измерять, и использует эту поправку для задания и поддержания производительности i-го абсорбера на уровне, вычисляемом по формуле Qрезул. i=Qi-ΔQi, где Qi - расчетное значение необходимой производительности i-й технологической нитки, при этом АСУ ТП следит за выполнением условия, чтобы общая производительность газодобывающего комплекса была равна заданной центральной диспетчерской службой для газодобывающего комплекса. Способ обеспечивает заданную степень осушки газа при минимальных энергетических и материальных затратах и соблюдении всех ограничений на технологические параметры процесса с помощью АСУ ТП и ведет к снижению численности персонала, занятого в обслуживании газодобывающего комплекса. 1 з.п. ф-лы, 3 ил.

Способ управления осуществляют путем распределения потока бытовой сточной воды по параллельно работающим отстойникам и регулирования вывода осветленного потока из каждого отстойника с обеспечением постоянства во времени и равенства для всех отстойников скорости ее вывода независимо от нагрузки на них по сточной воде. Это постоянство обеспечивают путем использования для управления выводом воды сигналов датчиков скоростей поступления сточной воды в отстойники и вывода осветленной воды и действующих по этим сигналам исполнительных механизмов, регулирующих затворы в тракте движения осветленной воды. 1 з.п. ф-лы, 2 ил.
Изобретение относится к регулированию жидкофазной термической конверсии тяжелого углеводородного сырья и может найти применение в нефтеперерабатывающей промышленности. Изобретение касается способа регулирования, включающего регулирование давления в реакторе и контроль времени пребывания реакционной массы в зоне реакции путем регулирования веса реакционной массы в реакторе, при этом осуществляют взвешивание реактора с реакционной массой, а вес реакционной массы в зоне реакции рассчитывают как разность весов заполненного и пустого реактора. Технический результат - повышение точности и упрощение регулирования. 3 пр.

Изобретение относится к способу управления реактором полимеризации в псевдоожиженном слое при получении полимера. Способ включает определение отношения производительности реактора по полимеру к давлению в реакторе, задание производительности реактора по полимеру, каковая производительность на основании указанного отношения по шагу соответствует желаемому давлению в реакторе, и корректировка скоростей подачи мономеров в реактор в соответствии с указанной заданной производительностью. Изобретение обеспечивает простое и эффективное управление реактором и позволяет достичь максимальной производительности реактора. 2 н. и 8 з. п. ф-лы, 1 ил.

Изобретение относится к области нефтеперерабатывающей промышленности, в частности к способам управления процессом каталитического риформинга при получении высокооктанового бензина

Наверх