Установка для плазменно-дуговой плавки

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначена для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях микрогравитации. Установка для плазменно-дуговой плавки содержит дуговую плавильную печь, включающую анод, катод, сообщенный с источником щелочного металла, нагреватель и источник электропитания. Установка дополнительно содержит технологический блок с системой вакуумирования, внутри которого смонтирован нагреватель в виде стержня, при этом источник с щелочным металлом выполнен в виде герметичной ампулы, сообщенной с катодом, причем анод, катод и ампула размещены в герметичной, отвакуумированной капсуле, а нагреватель контактирует с капсулой со стороны катода. Технический результат - возможность получения сверхпроводящего сплава с рекордной температурой перехода сплава в сверхпроводящее состояние, повышение техники безопасности, снижение массы возвращаемой на Землю капсулы. 1 ил.

 

Предлагаемое изобретение относится к области вакуумных установок для плазменной обработки металлов, в частности, для плазменной дуговой плавки металлов и сплавов в космосе, и предназначена для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях микрогравитации.

Известны установки (электропечи сопротивления) типа «Сплав» и «Кристалл», а также универсальная электропечь, применявшаяся на американской космической станции «Скайлэб», которые располагаются в отвакуумированном технологическом блоке и имеют полости, куда помещаются герметичные патроны (ампулы), содержащие переплавляемое вещество [1]. («Космическое материаловедение и технология», 1977. «Орбитальная станция «Скайлэб», Д.Бэлью, Э.Стулингер, 1977, стр.200).

Температура таких печей сопротивления, как правило, не превышает 1000-1200°С, однако, во-первых, этого недостаточно для плавки целого ряда металлов и сплавов, а, во-вторых, при более высоких температурах трудно или невозможно подобрать материал ампулы, вследствие взаимодействия его с переплавляемым веществом.

Известно также устройство для плазменной обработки материалов в дуговом разряде, принятое за прототип, представляющее собой, плазматрон [2], содержащий анод, полый термоэмиссионный катод, соединенный с узлом подачи рабочего тела (газа), источник электропитания.

Недостатком этого устройства является необходимость в дорогой системе откачки большой производительности при использовании его для плавки в дуговом разряде и невысокое качество переплавляемого материала.

Целью предлагаемого изобретения является снижение стоимости установки за счет исключения дорогой системы откачки, увеличение качества переплавляемого материала, а также повышение техники безопасности при проведении плавки в космическом пространстве в обитаемом космическом корабле и снижение веса возвращаемого на Землю объекта, включающего переплавленный материал.

Для достижения указанной цели установка для плазменно-дуговой плавки, содержащая источник электропитания и дуговую плавильную печь, состоящую из анода и катода, сообщенного с источником рабочего тела, включает технологический блок с системой вакуумирования и нагреватель в виде стержня, смонтированный внутри технологического блока, при этом источник рабочего тела заполнен щелочным металлом, например литием, и выполнен в виде герметичной ампулы, сообщенной с катодом, причем анод, катод и ампула размещены в герметичной, отвакуумированной капсуле, а нагреватель контактирует с капсулой со стороны катода.

На фиг.1 изображен общий вид предложенной установки.

Технологический блок 1 имеет загрузочный люк 2, патрубок 3 для подключения к системе вакуумирования 4 или для сообщения внутреннего объема технологического блока с забортным космосом. В технологическом блоке 1 расположена герметичная, отвакуумированная капсула 5, выполненная из тугоплавкого металла, например молибдена. В капсуле 5 смонтированы: анод 6, выполненный из переплавляемого материала, пористый катод 7 и источник рабочего тела - ампула 8, образующие плавильную печь. Расположенная внутри катода и содержащая щелочной металл (литий) ампула 8 имеет калиброванное отверстие 16, обращенное в сторону катода 7.

Анод 6 и пористый катод 7 электрически изолированы от стенки капсулы 5 с помощью изоляторов из окиси алюминия 9, соединенных с пористым катодом 7, анодом 6 и корпусом капсулы 5 методом высокотемпературной пайки. При этом корпус капсулы 5 со стороны катода 7 выполнен полым. Пусковой нагреватель 10 катода 7 выполнен в виде стержня из материала на основе нитрида бора, на наружной цилиндрической поверхности которого в спиральных канавках уложен нагревательный элемент 15, выполненный из вольфрам-рениевой проволоки. Нагреватель 10 с помощью кронштейна 12 и изолятора 11 крепится к технологическому блоку 1. Капсула 5 со стороны пористого катода 7 устанавливается на пусковой нагреватель 10 и крепится к нему накидной гайкой 13 через изолятор 14.

Установка работает следующим образом. Соединяют объем технологического блока 1 с системой вакуумирования 4, включают пусковой нагреватель 10 и разогревают пористый катод 7 и ампулу с литием 8. Литий испаряется и поступает через отверстие в ампуле 8 и пористый термоэмиссионный элемент катода 7 в межэлектродный промежуток (промежуток между анодом 6 и катодом 7) капсулы 5. Подают напряжение между анодом 6 и катодом 7 и зажигают разряд, увеличивают ток разряда и производят расплавление анода 6 в литиевой плазме низкого давления.

Анод 6 выполнен в виде цилиндра из несмачивающихся в условиях гравитации элементов, например, ниобия, легированного одним из редкоземельных элементов. Плавку проводят по заданной циклограмме.

Техническим результатом предлагаемого изобретения является возможность получения сверхпроводящего сплава с рекордной температурой перехода сплава в сверхпроводящее состояние.

Кроме того, в предложенной установке предполагается проведение плавок композиционных материалов на основе бериллия.

После проведения плавки капсулу 5 снимают с нагревателя 10 и возвращают на Землю.

Положительный эффект установки для плазменно-дуговой плавки в космосе достигается за счет проведения плавки в условиях микрогравитации в дуговом разряде низкого давления в плазме лития, в закрытой, герметичной, отвакуумированной капсуле. В результате чего за счет сильных восстановительных свойств литиевой плазмы увеличивается чистота переплавляемых материалов, возрастает ресурс катода плазмотрона, а также повышается техника безопасности, исключается попадание вредных аэрозольных соединений лития в атмосферу обитаемого космического корабля. При этом плавка проводится в низковольтной (15-20 Вольт) дуге низкого давления, что также повышает технику безопасности (по сравнению с плавкой электронным лучом) и значительно упрощает установку. Следует также отметить, что возвращаемая на Землю капсула имеет малую массу из-за исключения из возвращаемых на Землю элементов установки для плазменно-дуговой плавки технологического блока 1, пускового нагревателя 10 и узлов крепления 11, 12, 13 и 14 капсулы 5 на технологическом блоке.

Использованная литература

1. Д.Бэлью, Э.Стулингер. «Орбитальная станция «Скайлэб». «Космическое материаловедение и технология», 1977, стр.200.

2. Заявка на изобретение №2004138506/06 от 28.12.2004, опубликованная 10.06.2006. МПК Н05Н 1/24.

Установка для плазменно-дуговой плавки, содержащая источник электропитания и дуговую плавильную печь, состоящую из анода и катода, сообщенного с источником рабочего тела, отличающаяся тем, что она включает технологический блок с системой вакуумирования и нагреватель в виде стержня, смонтированный внутри технологического блока, при этом источник рабочего тела заполнен щелочным металлом, например литием, и выполнен в виде герметичной ампулы, сообщенной с катодом, причем анод, катод и ампула размещены в герметичной, отвакуумированной капсуле, а нагреватель контактирует с капсулой со стороны катода.



 

Похожие патенты:

Изобретение относится к области металлургии и литейного производства, а именно к устройству электродуговых печей. .

Изобретение относится к технологиям восстановления металлов из неорганических оксидов. .

Изобретение относится к электротермии и может быть использовано для плавления минеральных компонентов. .

Изобретение относится к области плазменной техники, а именно к конструкции плазмотронов, применяемых в металлургической промышленности в качестве источника нагрева.

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкотемпературной плазмы, и может быть использовано в плазмохимии и металлургии для проведения различных плазмохимических процессов, а также в лазерной технике.

Изобретение относится к приборостроению, а именно к аналитическим приборам для проведения спектрального анализа, и может использоваться в устройствах атомизации и возбуждения атомов анализируемых проб.

Изобретение относится к электротехнике и предназначено для формирования дугового разряда в плазмотроне. .

Изобретение относится к аналитическому приборостроению, к приборам для атомно-эмиссионного спектрального анализа веществ и материалов, а именно к источникам возбуждения атомно-эмиссионных спектров анализируемых проб.

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначено для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях микрогравитации. В плавильную печь установки для плазменно-дуговой плавки, содержащую катод и анод, введены герметичный отвакуумированный корпус, соединенный с катодом и анодом с помощью высокотемпературных гермовводов на основе окиси алюминия, кольцевая вставка, коаксиально охватывающая катод и электроизолированная от него, и контактирующий с внутренней поверхностью корпуса набор цилиндрических колец, чередующихся с шайбами, при этом кольца и шайбы выполнены из титановой губки и имеют различные внутренние диаметры, причем в кольцевой вставке выполнена коаксиальная полость, заполненная пористой структурой, пропитанной щелочным металлом, и открытая с торца, обращенного к катоду. Технический результат - возможность получения сверхпроводящего сплава с рекордной температурой перехода сплава в сверхпроводящее состояние, повышение безопасности плавки в космосе из-за герметично закрытого корпуса плавильной печи, повышение КПД печи. 1 ил.

Изобретение относится к электродуговым плазмотронам с водяной стабилизацией дуги и может быть эффективно использовано при резке всевозможных металлов. Технический результат - упрощение конструкции, увеличение мощности плазмотрона, энтальпии получаемой плазмы, скорости резки. Электродуговой плазмотрон содержит соосно и последовательно установленные охлаждаемые катодный узел, изолятор, вихревую камеру, систему ввода плазмообразующего газа и жидкости и анодный узел с соплом-анодом, установленным с межэлектродным зазором относительно катодного узла и образующим полость для жидкостной стабилизации дуги,переходящей на выходе в водяной экран. Полость в анодном сопле выполнена из двух сопряженных конических поверхностей: стенка на 2/3 длины начального участка полости составляет угол наклона α1=5-10°, далее α2=30-45° до цилиндрического участка на выходе, длина которого равна 0,5-0,8 его диаметра, при этом параметры анодного сопла определяют характер жидкостной стабилизации плазменной струи и защитные характеристики водосборника-рассекателя. 1 ил.

Изобретение относится к области электротехники, а именно к электродуговым нагревателям газа (плазмотронам), используемым для получения стационарных потоков низкотемпературной плазмы различных газов, и может быть применено в химической и металлургической промышленности, машиностроении, энергетике, экологии. В электродуговом нагревателе водяного пара, содержащем последовательно установленные вдоль продольной оси электрод-анод, кольцо подачи рабочего газа и электрод-катод, наружная поверхность внутреннего электрода-анода и зауженной части выходного электрода-катода охвачены плотно прилегающей металлической трубой с низкой теплопроводностью с толщиной стенки δ=(4÷8)·10-3 м, через которую косвенно осуществляется охлаждение внутреннего электрода-анода и зауженной части выходного электрода-катода. Соотношения геометрических размеров электродов составляют: d1/d2=1,1÷1,3, l1/d1=1,5÷4, l2/d2=3÷7, D1/d1≥1,5, D2/d2≥1,6, где d1, d2 - диаметры зауженных частей (м), D1, D2 - диаметры расширенных частей (м), l1, l2 - длины зауженных частей (м) внутреннего электрода-анода и выходного электрода-катода соответственно. Технический результат - повышение ресурса работы нагревателя. 1 ил.

Изобретение относится к области плазменных технологий и может быть использовано при разработке и создании источников высокоинтенсивных потоков частиц для научных и технологических применений. Способ получения высокоэнергетических потоков частиц в газах состоит в ускорении гетерогенного потока в сопле Лаваля. В дозвуковую часть сопла Лаваля вводят поток плазмы, обеспечивают ее ускорение до скорости звука и полную рекомбинацию плазмы до критического сечения сопла, а после критического сечения вводят в поток частицы и ускоряют гетерогенный поток газа в сверхзвуковой части сопла Лаваля. Устройство для получения высокоэнергетических потоков частиц содержит непрерывный источник плазмы, сопло Лаваля и систему ввода частиц. Устройство дополнительно содержит камеру высокого давления, матрицу из N непрерывных микроплазмотронов и систему подачи газа высокого давления. Длина дозвуковой части сопла Лаваля определяется из условия полной рекомбинации плазмы до критического сечения, а система ввода частиц обеспечивает ввод частиц после критического сечения по всему периметру сопла в сечении сопла с заданными параметрами - температурой и скоростью газа. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области преобразования электрической энергии в тепловую посредством дугового разряда в генераторе низкотемпературной плазмы (плазмотроне) и может быть использовано в энергетике для розжига и подсветки пылеугольного факела в топочных устройствах, в металлургической и химической промышленности, для получения ультрадисперсной сажи, которая является сырьем для получения наноструктурированного технического углерода. Плазмотрон содержит наружный электрод, соосно расположенный внутренний электрод-катододержатель, вихревую камеру подачи плазмообразующего газа. Электроды изолированы и размещены в индукционных катушках. Внутренний электрод-катододержатель выполнен полым. Углеводороды метанового ряда подают в дуговой канал наружного электрода через выходные каналы и кольцевую полость. В прикатодную область углеводороды метанового ряда подают через трубу, расположенную по оси внутреннего электрода-катододержателя и полость, образованную расположением катода в полом электроде-катододержателе. Плазмотрон имеет не менее четырех каналов подачи углеводородного газа в прикатодную область дугового разряда. Расположены каналы равномерно по окружности. Суммарная площадь проходных сечений каналов обеспечивает скорость истечения газа порядка 0,3-0,5 от скорости звука при заданном полном давлении и температуре подаваемого газа. Подвод углеводородного газа в прикатодную область дугового разряда выполнен в трех вариантах. Технический результат изобретения - повышение ресурса работы электрода за счет устойчивого возобновления защитного углеродного наноструктурированного слоя. 3 з.п. ф-лы, 5 ил.

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в противоположно расположенных секциях газоразрядной камеры. Поджиг индукционного разряда осуществляют при атмосферном давлении путем одновременной подачи плазмообразующего газа и напряжения на первичную обмотку и электроды. После поджига индукционного разряда один из дуговых разрядов отключают, а второй используют для проведения плазмохимических реакций. Дополнительный дуговой разряд позволяет поднять локально напряженность электрического поля и энерговклад до нужного уровня, обеспечивая возможность проведения широкого спектра плазмохимических процессов, требующих повышенной мощности и повышенного значения напряженности электрического поля в зоне проведения плазмохимических реакций. Технический результат - повышение энергоэффективности. 3 н. и 3 з.п. ф-лы, 1 ил.

Настоящее изобретение относится к вариантам способа преобразования исходного топлива во вторичное топливо посредством установки реформинга. Один из вариантов способа включает следующие этапы: подачу исходного топлива в печь установки реформинга, причем исходное топливо содержит отходы в виде сточных вод и/или твердых отходов, содержащих углерод; подачу в печь метана в качестве дополнительного исходного топлива; подачу воды в печь; обеспечение одного или более плазменно-дуговых источников тепла в установке реформинга для расщепления указанных исходных топлив и указанной воды на один или более составляющих компонентов и/или их комбинации; преобразование по меньшей мере части указанного одного или более составляющих компонентов воды и исходных топлив и/или их комбинации в указанное вторичное топливо с использованием одного или более катализаторов; вывод указанного вторичного топлива из установки реформинга. В другом варианте способа исходным топливом является метан, а вторичным топливом – метанол. Предлагаемые способы позволяют отказаться от использования больших конвертеров для печей (печных камер) при использовании метана для питания плазменно-дуговых горелок. 4 н. и 9 з.п. ф-лы, 4 ил.
Наверх