Способ согласования комплексных сопротивлений и устройство его реализации

Настоящее изобретение относится к области радиосвязи и радиолокации и может быть использовано для перестраиваемого по частоте согласования произвольных комплексных сопротивлений в заданной полосе частот. Способ согласования комплексных сопротивлений отличается тем, что четырехполюсник выполняют комплексным из реактивных и резистивных элементов, вводят двухполюсный нелинейный элемент, включают его между источником высокочастотного сигнала и входом четырехполюсника, подключают к источнику низкочастотного управляющего сигнала, к выходу комплексного четырехполюсника подключают нагрузку, условия обеспечения минимума отраженного сигнала выполняют последовательно на заданном количестве частот при одновременном изменении амплитуды управляющего сигнала. Техническим результатом изобретения является расширение областей физической реализуемости как областей изменения действительной и мнимой составляющих сопротивлений источника сигнала и нагрузки, в пределах которых последовательно на заданном количестве частот обеспечивается полное согласование комплексного сопротивления источника сигнала и комплексного сопротивления нагрузки. 2 н.п. ф-лы, 4 ил.

 

Изобретения относятся к области радиосвязи и радиолокации и могут быть использованы для перестраиваемого по частоте согласования произвольных комплексных сопротивлений в заданной полосе частот.

Известен способ согласования комплексных сопротивлений, состоящий в том, что с помощью согласующего устройства, выполненного в виде резистивного четырехполюсника, включаемого между источником высокочастотного сигнала и нагрузкой, на заданной частоте достигаются условия минимизации отраженного сигнала или максимизации передачи мощности источника сигнала в нагрузку [Головков А.А., Девятков А.Г. Синтез согласующе-фильтрующих и фазовых устройств на резистивных элементах с сосредоточенными параметрами. Телекоммуникации, 2006 г., №6, стр.36-38; Головков А.А. Комплексированные радиоэлектронные устройства. М.: Радио и связь, 1996. - 128 с.].

Известны устройства согласования, реализующие этот способ, выполненные в виде типовых схем резистивных четырехполюсников (Г-образное соединение двух резистивных двухполюсников, Т-образное соединение трех резистивных двухполюсников и т.д.), значения сопротивлений которых определены из условия минимизации отраженного сигнала или максимизации передачи мощности источника сигнала в нагрузку [там же].

Принцип действия этого способа и устройства заключается в том, что благодаря специальному выбору значений параметров резистивного четырехполюсника на заданной частоте обеспечивается полное согласование комплексного сопротивления источника сигнала и комплексного сопротивления нагрузки, а в заданной полосе частот - согласование с заданным допуском.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ согласования комплексных сопротивлений, состоящий в том, что с помощью согласующего устройства, выполненного в виде реактивного четырехполюсника, включаемого между источником высокочастотного сигнала и нагрузкой, на заданном количестве частот достигаются условия минимизации отраженного сигнала или максимизации передачи мощности источника сигнала в нагрузку [Головков А.А. Комплексированные радиоэлектронные устройства. М.: Радио и связь, 1996. - 128 с.].

Наиболее близким по технической сущности и достигаемому результату (прототипом) является устройство согласования, реализующее этот способ, выполненное в виде типовой схемы реактивного четырехполюсника из Г-образного соединения двух реактивных двухполюсников, каждый из которых выполнен в виде колебательного контура, значения параметров которых определены из условия минимизации отраженного сигнала или максимизации передачи мощности источника сигнала в нагрузку на двух частотах [Головков А.А. Комплексированные радиоэлектронные устройства. М.: Радио и связь, 1996. - 128 с.].

Принцип действия этого способа и устройства заключается в том, что благодаря специальному выбору значений параметров реактивного четырехполюсника на заданном количестве частот обеспечивается полное согласование комплексного сопротивления источника сигнала и комплексного сопротивления нагрузки, а в заданной полосе частот - согласование с заданным допуском.

Основным недостатком всех перечисленных способов и устройств является то, что все элементы четырехполюсников (согласующих устройств) выполнены либо только резистивными, либо только реактивными. При использовании в согласующих устройствах только реактивных или только резистивных элементов не всегда удается обеспечить условия согласования по критерию обеспечения минимума отраженного сигнала или максимума передачи мощности источника сигнала в нагрузку, поскольку такие согласующие устройства имеют определенные области физической реализуемости (области изменения действительной и мнимой составляющих сопротивлений источника сигнала и нагрузки), в пределах которых реализуются эти условия согласования (Головков А.А. Комплексированные радиоэлектронные устройства. М.: Радио и связь, 1996. - 128 с.).

Все перечисленные способы и устройства обладают еще одним важным недостатком, который состоит в невозможности обеспечения перестройки по частоте согласования произвольных комплексных сопротивлений в заданной полосе частот, поскольку в схеме согласующего устройства отсутствуют управляемые нелинейные элементы и не созданы условия для такой перестройки.

Техническим результатом изобретения является расширение областей физической реализуемости как областей изменения действительной и мнимой составляющих сопротивлений источника сигнала и нагрузки, в пределах которых последовательно на заданном количестве частот обеспечивается полное согласование комплексного сопротивления источника сигнала и комплексного сопротивления нагрузки, а в заданной полосе частот - согласование с заданным допуском при одновременном увеличении полосы частот, в которой возможна перестройка по частоте согласования произвольных комплексных сопротивлений источника сигнала и нагрузки (например, антенны), за счет оптимизации схемы и значений параметров комплексного четырехполюсника и управления нелинейным элементом. Возможность изменения варианта включения нелинейного элемента относительно согласующего комплексного четырехполюсника еще более расширяет области физической реализуемости.

1. Указанный результат достигается тем, что в известном способе согласования комплексных сопротивлений, состоящем в том, что между источником высокочастотного сигнала и нагрузкой включают согласующее устройство, выполненное из четырехполюсника, параметры которого выбраны из условия обеспечения минимума отраженного сигнала, дополнительно четырехполюсник выполняют комплексным из реактивных и резистивных элементов, вводят двухполюсный нелинейный элемент и включают его в продольную цепь между источником высокочастотного сигнала и входом четырехполюсника, нелинейный элемент подключают к источнику низкочастотного управляющего сигнала, к выходу комплексного четырехполюсника подключают нагрузку, условия обеспечения минимума отраженного сигнала выполняют последовательно на заданном количестве частот при одновременном изменении амплитуды управляющего сигнала за счет того, что в интересах обеспечения перестраиваемого по частоте согласования произвольных комплексных сопротивлений источника высокочастотного сигнала и нагрузки в заданной полосе частот зависимость элемента z22 матрицы сопротивлений комплексного четырехполюсника от частоты выбирают с помощью следующего математического выражения:

z 2 2 = z н + z 2 1 2 z 0 z z 1 1 ,

где z11, z21 - заданные зависимости соответствующих элементов матрицы сопротивлений комплексного четырехполюсника от частоты; z0 - заданная зависимость комплексного сопротивления источника высокочастотного сигнала от частоты; zн - заданная зависимость комплексного сопротивления нагрузки от частоты; z - заданная зависимость комплексного сопротивления двухполюсного нелинейного элемента от частоты при соответствующем изменении амплитуды низкочастотного управляющего сигнала.

2. Указанный результат достигается тем, что в устройстве согласования комплексных сопротивлений, включенном между источником высокочастотного сигнала и нагрузкой и состоящем из четырехполюсника, параметры которого выбраны из условия обеспечения минимума отраженного сигнала, дополнительно четырехполюсник выполнен комплексным в виде П-образного соединения трех двухполюсников с комплексными сопротивлениями Z1n, Z2n, Z3n, второй комплексный двухполюсник комплексного четырехполюсника сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, конденсатора с емкостью С, произвольного реактивного двухполюсника с сопротивлениями Х01, Х02 на двух частотах и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и катушки с индуктивностью L, введенный двухполюсный нелинейный элемент, подключенный к введенному источнику низкочастотного управляющего сигнала, включен между источником высокочастотного сигнала и входом комплексного четырехполюсника в продольную цепь, нагрузка подключена к выходу четырехполюсника, значения параметров второго комплексного двухполюсника определены в соответствии со следующими математическими выражениями:

r1, r2, x1, x2 - оптимальные значения действительных и мнимых составляющих сопротивления второго комплексного двухполюсника комплексного четырехполюсника на двух частотах; Z 2 n = r n + j x n = z 0 n ( z 0 n z n ) [ z н n ( Z 1 n + Z 3 n ) + Z 1 n Z 3 n ] z н n Z 1 n Z 3 n ( Z 1 n + z n z 0 n ) ( Z 3 n + z н n ) ; - оптимальные значения сопротивления второго комплексного двухполюсника комплексного четырехполюсника на двух частотах; Z1n, Z3n - заданные значения сопротивления первого и третьего комплексных двухполюсников комплексного четырехполюсника на двух частотах; z0n - заданные значения комплексных сопротивлений источника высокочастотного сигнала на двух частотах; zнn - заданные значения комплексных сопротивлений нагрузки на двух частотах; zn - заданные значения комплексных сопротивлений двухполюсного нелинейного элемента на двух частотах, соответствующих двум значениям амплитуды управляющего сигнала; ω1,2=2πf1,2; n=1, 2 - номера заданных двух частот f1,2.

На фиг.1 показана схема согласующего устройства комплексных сопротивлений (прототип), реализующего способ-прототип.

На фиг.2 показана структурная схема предлагаемого устройства по п.2., реализующая предлагаемый способ по п.1.

На фиг.3 приведена схема комплексного четырехполюсника, входящего в предлагаемое устройство, схема которого представлена на фиг.2.

На фиг.4 приведена схема второго комплексного двухполюсника, входящего в четырехполюсник, схема которого представлена на фиг.3.

Согласующее устройство-прототип (Фиг.1), реализующее способ-прототип, содержит источник высокочастотного сигнала (на фиг.1 не показан) с комплексным сопротивлением - 1, реактивный четырехполюсник - 2 в виде Г-образного соединения двух реактивных двухполюсников - 3, 4, каждый из которых выполнен в виде параллельного колебательного контура на элементах L1 - 5, С1 - 6 и L2 - 7, С2 - 8, и нагрузку с комплексным сопротивлением - 9. Значения параметров контуров выбраны из условия одновременного обеспечения согласования комплексных сопротивлений источника высокочастотного сигнала - 1 и нагрузки - 9 на двух частотах по критерию обеспечения минимума отраженного сигнала. Принцип действия этого устройства согласования комплексных сопротивлений источника высокочастотных сигналов и нагрузки (прототипа), реализующего способ-прототип, состоит в следующем.

Благодаря выбору значений параметров контуров из условия одновременного обеспечения согласования комплексных сопротивлений источника высокочастотного сигнала - 1 и нагрузки - 9 на двух частотах по критерию достижения минимума отраженного сигнала на этих частотах осуществляется полное согласование, коэффициент стоячей волны оказывается равным единице. При разумном выборе задаваемых двух частот вблизи их окрестностей в определенной полосе частот будет достигнуто согласование с заданным допуском - коэффициент стоячей волны не превышает заданного значения.

Недостатки способа-прототипа и устройства его реализации описаны выше.

Предлагаемое устройство по п.2 (фиг.2), реализующее предлагаемый способ по п.1, содержит каскадно-соединенные источник высокочастотного сигнала (на фиг.2 не показан) с комплексным сопротивлением - 1, двухполюсный нелинейный элемент - 19 (включен в продольную цепь), подключенный к источнику низкочастотного управляющего сигнала - 20, комплексный четырехполюсник - 10 в виде П-образного соединения трех комплексных двухполюсников - 11, 12, 13 (фиг.3), второй из которых сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1 - 14, конденсатора с емкостью С - 15, произвольного реактивного двухполюсника - 16 с зависимостью сопротивления Х0 от частоты и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 - 17 и катушки с индуктивностью L - 18, и нагрузку с комплексным сопротивлением - 9. Значения параметров R1, R2, C, L второго комплексного двухполюсника - 12 комплексного четырехполюсника - 10 выбраны из условия последовательного обеспечения согласования комплексных сопротивлений источника высокочастотного сигнала - 1 и нагрузки - 9 на двух частотах по критерию обеспечения минимума отраженного сигнала при соответствующем изменении амплитуды низкочастотного управляющего сигнала.

Принцип действия этого устройства согласования комплексных сопротивлений источника высокочастотных сигналов и нагрузки, реализующего предлагаемый способ, состоит в следующем.

Благодаря выбору значений параметров R1, R2, С, L второго комплексного двухполюсника - 12 комплексного четырехполюсника - 10 из условия последовательного обеспечения согласования комплексных сопротивлений источника высокочастотного сигнала - 1 и нагрузки - 9 на двух частотах по критерию обеспечения минимума отраженного сигнала при двух значениях амплитуды низкочастотного управляющего сигнала на этих частотах последовательно осуществляется полное согласование, коэффициент стоячей волны оказывается равным единице. При разумном выборе задаваемых двух частот вблизи их окрестностей в определенной полосе частот будет достигнуто перестраиваемое по частоте согласование с заданным допуском - коэффициент стоячей волны не превышает заданного значения при непрерывном изменении амплитуды низкочастотного управляющего сигнала. Эти две частоты выбираются из заданной полосы частот в соответствии с указанным условием. В частном случае, соответствующем постоянству амплитуды низкочастотного управляющего сигнала, в определенной полосе частот будет достигнуто одновременное согласование с заданным допуском - коэффициент стоячей волны не превышает заданного значения, а на двух заданных частотах одновременно осуществляется полное согласование. Полоса частот, в пределах которой наблюдается перестраиваемое согласование, всегда шире, чем полоса частот, в пределах которой наблюдается одновременное согласование.

Докажем возможность реализации указанных свойств.

Пусть известны зависимости сопротивления z0=r0+jx0 источника высокочастотного сигнала и нагрузки zн=rн+jxн от частоты. Известны также зависимости сопротивления нелинейного элемента z=r+jx от частоты и амплитуды низкочастотного управляющего сигнала. Для простоты записи аргументы ω=2πf (круговая частота) и U, I (амплитуды низкочастотного управляющего сигнала) опущены.

Нелинейный элемент и комплексный четырехполюсник (КЧ) характеризуются следующими матрицами передачи:

A н э = [ 1 z 0 1 ] ; A к ч = [ z 1 1 z 2 1 | z | z 2 1 1 z 2 1 z 2 2 z 2 1 ] , ( 1 )

где | z | = z 1 1 z 2 2 + z 2 1 2 ; z11, z21, z22 - определитель и элементы матрицы сопротивлений КЧ с учетом условия взаимности z12=-z21.

Умножим матрицу передачи нелинейного элемента на матрицу передачи комплексного четырехполюсника. С учетом z0, zн (:Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1971, с.34-36) получим выражение для нормированной классической матрицы передачи согласующего устройства:

A = [ z 1 1 + z z 2 1 z н z 0 ( z 2 2 z + | z | ) z 2 1 1 z 0 z н 1 z 2 1 z 0 z н z 2 2 z 2 1 z 0 z н ] . ( 2 )

Используя известные соотношения между элементами классической матрицы передачи и элементами матрицы рассеяния (там же) с учетом (2) получим выражение для коэффициента отражения:

S 1 1 = ( z 0 + z ) ( z н z 2 2 ) + z 1 1 z н | z | ( z 0 + z ) ( z н z 2 2 ) + z 1 1 z н | z | . ( 3 )

Решение комплексного уравнения, сформированного из равенства нулю коэффициента отражения (3):

z 2 2 = z н + z 2 1 2 z 0 z z 1 1 . ( 4 )

Полученная взаимосвязь элементов матрицы сопротивлений КЧ (4) с учетом заданных частотных зависимостей z11, z21, z0, z, zн является оптимальной аппроксимирующей функцией частотной зависимости соответствующего элемента (z22) матрицы сопротивлений КЧ. Если реализовать эту аппроксимирующую функцию в пределах какой-либо полосы частот или на отдельных частотах, то в этой полосе частот или на этих частотах будут обеспечены условия согласования по критерию достижения минимума отраженного сигнала. Для этого необходимо взять любую типовую схему КЧ, найти матрицу сопротивлений этой схемы и найденные таким образом элементы этой матрицы, выраженные через параметры схемы, подставить в (4) и решить сформированное комплексное уравнение относительно сопротивления выбранного одного двухполюсника. Частотные характеристики остальных параметров r0, x0, rн, xн, r, x и оставшихся двухполюсников КЧ могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например из условия увеличения полосы частот, в пределах которой будет достигнуто перестраиваемое по частоте согласование с заданным допуском - коэффициент стоячей волны не превышает заданного значения при непрерывном изменении амплитуды низкочастотного управляющего сигнала.

В соответствии с изложенным алгоритмом получены выражения для отыскания оптимальной аппроксимации частотной зависимости комплексного сопротивления второго двухполюсника КЧ в виде П-образного соединения трех комплексных двухполюсников (фиг.3):

Z 2 n = r n + j x n = z 0 n ( z 0 n z n ) [ z н n ( Z 1 n + Z 3 n ) + Z 1 n Z 3 n ] z н n Z 1 n Z 3 n ( Z 1 n + z n z 0 n ) ( Z 3 n + z н n ) , ( 5 )

где n=1, 2… - номера частот интерполяции. Сопротивления Z1n, Z3n могут быть выбраны произвольно или исходя из каких-либо других физических соображений. Индекс n необходимо ввести и в другие обозначения физических величин, явным образом зависящих от частоты. Физический смысл решения (5) состоит в том, что частотная зависимость комплексного сопротивления второго двухполюсника КЧ обеспечивает равенство частотной зависимости сопротивления источника высокочастотного сигнала и частотной зависимости входного сопротивления остальной части согласующего устройства (в сечении 1-1I (фиг.2)). При этом обеспечивалось бы полное согласование на всем спектре частот. Однако реализация (5) в сплошной даже очень узкой полосе частот при постоянной амплитуде напряжения на нелинейном элементе невозможна.

Для реализации оптимальной аппроксимации (5) последовательно на всех частотах заданной полосы частот, соответствующей заданному диапазону изменения амплитуды управляющего сигнала на нелинейном элементе, методом интерполяции необходимо сформировать двухполюсник с сопротивлением Z2n из не менее, чем 2N (N - число частот интерполяции) элементов типа R, L, C, найти выражения для их сопротивлений, приравнять их к оптимальным значениям сопротивлений двухполюсника на заданных частотах, соответствующих заданным амплитудам управляющего сигнала, определенным по формулам (5), и решить сформированную таким образом систему 2N уравнений относительно 2N выбранных параметров R, L, C. Значения параметров остальных элементов могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например из условия физической реализуемости. Пусть второй двухполюсник КЧ с сопротивлением Z2n сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, конденсатора с емкостью С, произвольного реактивного двухполюсника с сопротивлениями Х01, Х02 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и катушки с индуктивностью L (фиг.4). Комплексное сопротивление второго двухполюсника КЧ:

Z 2 n = R 1 + 1 j ω n C + j X 0 n + R 2 j ω n L j ω n L + R 2 . ( 6 )

Разделим в (6) между собой действительную и мнимую части и для N=2 составим систему четырех уравнений:

r1, r2, x1, x2 - оптимальные значения действительных и мнимых составляющих сопротивления второго комплексного двухполюсника комплексного четырехполюсника на двух частотах и двух амплитудах управляющего сигнала на нелинейном элементе (сопротивление Z2n (5) зависит от zn).

Реализация оптимальных аппроксимаций частотных характеристик четырехполюсника (4) с помощью П-образного звена (5) и второго двухполюсника этого звена с помощью (6), (8) обеспечивает реализацию условия согласования с заданным допуском последовательно на всех заданных частотах требуемой полосы частот, соответствующей диапазону изменения амплитуды управляющего сигнала на нелинейном элементе. Разумный выбор положений частот ω1, ω2 относительно друг друга и дополнительное варьирование значений свободных от ограничений типа (4)-(6), (8) параметров еще более увеличивает полосу частот, в пределах которой будет достигнуто перестраиваемое по частоте согласование с заданным допуском - коэффициент стоячей волны не превышает заданного значения при непрерывном изменении амплитуды низкочастотного управляющего сигнала.

Предлагаемые технические решения являются новыми, поскольку из общедоступных сведений неизвестны способ и устройство согласования комплексных сопротивлений в заданной полосе частот за счет специального выбора частотной зависимости элемента z22 матрицы сопротивлений комплексного четырехполюсника, реализуемой выполнением этого четырехполюсника в виде П-образного соединения трех комплексных двухполюсников, формированием второго комплексного двухполюсника П-образного соединения из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, конденсатора с емкостью С, произвольного реактивного двухполюсника с сопротивлениями Х01, Х02 на двух частотах и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и катушки с индуктивностью L и выбором указанных параметров по соответствующим математическим выражениям в интересах достижения минимума отраженного сигнала последовательно на всех частотах этой полосы частот при соответствующем изменении амплитуды низкочастотного управляющего сигнала.

Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций (выполнение согласующего устройства для реализации предлагаемого способа в виде, показанном на фиг.2, выполнение четырехполюсника комплексным в виде соединенных между собой указанным выше способом трех двухполюсников (фиг.3), формирование второго двухполюсника из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, конденсатора с емкостью С, произвольного реактивного двухполюсника с сопротивлениями Х01, Х02 на двух частотах и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и катушки с индуктивностью L (фиг.4), выбор значений элемента z22 матрицы сопротивлений комплексного четырехполюсника, выбор значений параметров второго двухполюсника КЧ из условия последовательного обеспечения условий согласования на всех заданных частотах при изменении состояния нелинейного двухполюсного элемента под действием амплитуды низкочастотного управляющего сигнала) обеспечивает перестраиваемое согласование по критерию минимума отраженного сигнала в заданной полосе частот по закону изменения амплитуды низкочастотного управляющего сигнала.

Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы серийно выпускаемые промышленностью полупроводниковые диоды (параметрические диоды, p-i-n-диоды, диоды Ганна, туннельные диоды, лавинно-пролетные диоды и т.д.), индуктивности, резисторы и емкости, сформированные в заявленную схему комплексного четырехполюсника. Значения параметров индуктивностей, резистивных элементов и емкостей, входящих в схему второго двухполюсника КЧ, могут быть однозначно определены с помощью математических выражений, приведенных в формуле изобретения.

Технико-экономическая эффективность предложенных способа и устройства заключается в последовательном обеспечении условий согласования комплексных сопротивлений источника высокочастотного сигнала и нагрузки на всех частотах в заданной сплошной полосе частот, соответствующей заданному диапазону изменения амплитуды низкочастотного управляющего сигнала, за счет выбора схемы и значений параметров элементов R, L, C комплексного четырехполюсника по критерию обеспечения минимума отраженного сигнала на этих частотах при изменяемом состоянии нелинейного двухполюсного элемента под действием низкочастотного управляющего сигнала, что позволяет расширить области физической реализуемости как области изменения действительной и мнимой составляющих сопротивлений источника сигнала и нагрузки, в пределах которых последовательно на заданном количестве частот обеспечивается полное согласование комплексного сопротивления источника сигнала и комплексного сопротивления нагрузки, а в заданной полосе частот - согласование с заданным допуском при одновременном увеличении полосы частот, в которой возможна перестройка по частоте согласования произвольных комплексных сопротивлений источника сигнала и нагрузки (например, антенны), за счет оптимизации схемы и значений параметров комплексного четырехполюсника и управления нелинейным элементом.

1. Способ согласования комплексных сопротивлений, состоящий в том, что между источником высокочастотного сигнала и нагрузкой включают согласующее устройство, выполненное из четырехполюсника, параметры которого выбирают из условия обеспечения минимума отраженного сигнала, отличающийся тем, что четырехполюсник выполняют комплексным из реактивных и резистивных элементов, вводят двухполюсный нелинейный элемент, включают его в продольную цепь между источником высокочастотного сигнала и входом четырехполюсника и подключают к источнику низкочастотного управляющего сигнала, к выходу комплексного четырехполюсника подключают нагрузку, условия обеспечения минимума отраженного сигнала выполняют последовательно на заданном количестве частот при одновременном изменении амплитуды управляющего сигнала за счет того, что в интересах обеспечения перестраиваемого по частоте согласования произвольных комплексных сопротивлений источника высокочастотного сигнала и нагрузки в заданной полосе частот зависимость элемента z22 матрицы сопротивлений комплексного четырехполюсника от частоты выбирают с помощью следующего математического выражения:
z 22 = z н + z 21 2 z 0 z z 11 ,
где z11, z22 - заданные зависимости соответствующих элементов матрицы сопротивлений комплексного четырехполюсника от частоты; z0 - заданная зависимость комплексного сопротивления источника высокочастотного сигнала от частоты; zн - заданная зависимость комплексного сопротивления нагрузки от частоты; z - заданная зависимость комплексного сопротивления двухполюсного нелинейного элемента от частоты при соответствующем изменении амплитуды низкочастотного управляющего сигнала.

2. Устройство согласования комплексных сопротивлений, включенное между источником высокочастотного сигнала и нагрузкой и состоящее из четырехполюсника, параметры которого выбраны из условия обеспечения минимума отраженного сигнала, отличающееся тем, что четырехполюсник выполнен комплексным в виде П-образного соединения трех двухполюсников с комплексными сопротивлениями Z1n, Z2n, Z3n, второй комплексный двухполюсник комплексного четырехполюсника сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, конденсатора с емкостью С, произвольного реактивного двухполюсника с сопротивлениями Х01, Х02 на двух частотах и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и катушки с индуктивностью L, введенный двухполюсный нелинейный элемент, подключенный к введенному источнику низкочастотного управляющего сигнала, включен между источником высокочастотного сигнала и входом комплексного четырехполюсника в продольную цепь, нагрузка подключена к выходу четырехполюсника, значения параметров второго комплексного двухполюсника определены в соответствии со следующими математическими выражениями:
R 1 = ω 2 3 r 1 ( x 2 X 0 2 ) [ ω 2 ( x 2 X 0 2 ) 2 ω 1 ( x 1 X 0 1 ) ] ω 1 3 ( x 1 X 0 1 ) r 2 [ ω 1 ( x 1 X 0 1 ) 2 ω 2 ( x 2 X 0 2 ) ] + ω 1 2 ω 2 2 ( r 1 r 2 ) 3 ( ω 2 2 ω 1 2 ) [ ω 2 ( x 2 X 0 2 ) ω 1 ( x 1 X 0 1 ) ] 2 ;
R 2 = ω 1 4 A + ω 2 ω 1 3 B + ω 1 2 ω 2 2 C 1 + ω 1 ω 2 3 D + ω 2 4 E ( r 2 r 1 ) ( ω 2 2 ω 1 2 ) [ ( x 1 X 0 1 ) ω 1 ( x 2 X 0 2 ) ω 2 ] 2 ;
C = ( ω 1 2 ω 2 2 ) [ ω 1 ( x 1 X 0 1 ) ω 2 ( x 2 X 0 2 ) ] ω 1 ω 2 { ω 1 ω 2 [ ( r 1 r 2 ) 2 + ( x 1 X 0 1 ) 2 + ( x 2 X 0 2 ) 2 ] ( x 1 X 0 1 ) ( x 2 X 0 2 ) ( ω 1 2 + ω 2 2 ) } ;
L = ω 1 4 A + ω 2 ω 1 3 B + ω 1 2 ω 2 2 C 1 + ω 1 ω 2 3 D + ω 2 4 E ( ω 1 2 ω 2 2 ) [ ω 1 ( x 1 X 0 1 ) ω 2 ( x 2 X 0 2 ) ] 3 ,
где A = ( x 1 X 0 1 ) 2 [ ( r 1 r 2 ) 2 + ( x 1 X 0 1 ) 2 ] ; B = 2 ( x 1 X 0 1 ) ( x 2 X 0 2 ) [ ( r 1 r 2 ) 2 + 2 ( x 1 X 0 1 ) 2 ] ; C 1 = [ ( x 1 X 0 1 ) 2 + ( x 2 X 0 2 ) 2 ] ( r 1 r 2 ) 2 + 6 ( r 1 2 r 2 2 + ( x 1 X 0 1 ) 2 ( x 2 X 0 2 ) 2 ) + r 1 4 + r 2 4 4 r 1 r 2 ( r 1 2 + r 2 2 ) ; D = 2 ( x 1 X 0 1 ) ( x 2 X 0 2 ) [ ( r 1 r 2 ) 2 + 2 ( x 2 X 0 2 ) 2 ] ; E = ( x 2 X 0 2 ) 2 [ ( r 1 r 2 ) 2 + ( x 2 X 0 2 ) 2 ] ;
r1, r2, x1, x2 - оптимальные значения действительных и мнимых составляющих сопротивления второго комплексного двухполюсника комплексного четырехполюсника на двух частотах; Z 2 n = r n + j x n = z 0 n ( z 0 n z n ) [ z н n ( Z 1 n + Z 3 n ) + Z 1 n Z 3 n ] z н n Z 1 n Z 3 n ( Z 1 n + z n z 0 n ) ( Z 3 n + z н n ) - оптимальные значения сопротивления второго комплексного двухполюсника комплексного четырехполюсника на двух частотах; Z1n, Z3n - заданные значения сопротивления первого и третьего комплексных двухполюсников комплексного четырехполюсника на двух частотах; Z0n - заданные значения комплексных сопротивлений источника высокочастотного сигнала на двух частотах; zнn - заданные значения комплексных сопротивлений нагрузки на двух частотах; zn - заданные значения комплексных сопротивлений двухполюсного нелинейного элемента на двух частотах, соответствующих двум значениям амплитуды управляющего сигнала; ω1,2=2πf1,2; n=1, 2 - номера заданных двух частот f1,2.



 

Похожие патенты:

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот, что позволяет формировать сложные сигналы и создавать эффективные компактные средства радиосвязи с заданным количеством радиоканалов.

Изобретение относится к области радиосвязи и радиолокации и может быть использовано для перестраиваемого по частоте согласования произвольных комплексных сопротивлений в заданной полосе частот.

Изобретение относится к радиотехнике сверхвысоких частот и может использоваться в радиосхемах с применением направленных ответвителей с сильной связью в полосковом исполнении.

Изобретение относится к технике сверхвысоких частот и предназначено для частотной селекции сигналов. .

Изобретение относится к технике сверхвысоких частот и предназначено для частотной селекции сигналов на двух несущих частотах. .

Изобретение относится к технике СВЧ. .

Изобретение относится к области радиоэлектроники и может быть использовано в качестве эквивалента нагрузки для тестирования мощных радиопередающих устройств. .

Изобретение относится к технике СВЧ, а именно к способам изготовления полосовых фильтров на диэлектрических резонаторах

Изобретение относится к технике сверхвысоких частот и предназначено для объединения или разделения сигналов на двух несущих частотах

Изобретение относится к области электроники сверхвысоких частот, а именно к дискретным фазовращателям проходного типа, и может быть использовано в качестве электронно-управляемых устройств в проходной фазированной антенной решетке

Изобретение относится к области радиотехники сверхвысоких частот (СВЧ), а более конкретно к волноводным фазовращателям и предназначено, главным образом, для построения антенных решеток с электронным сканированием луча, например, миллиметрового диапазона длин волн. Технический результат - снижение вносимых потерь волноводного фазовращателя при быстром электрическом управлении фазой. Для этого электромагнитную волну поперечно-электрического типа (ТЕ-волну) пропускают через секцию прямоугольного волновода с варакторами, подают управляющее электрическое напряжение на варакторы, которое изменяет эффективную ширину волновода, и тем самым управляют длиной ТЕ-волны в волноводе, что при неизменной геометрической длине секции волновода обеспечивает быстрое управление фазой при низких вносимых потерях на проход волны. Предлагается устройство, которое содержит источник управляющего электрического напряжения и секцию прямоугольного волновода, состоящего из четырех проводящих (металлических) стенок, пропускающую ТЕ-волну в продольном направлении, отличающееся включением, по крайней мере, вдоль одной из узких стенок волновода продольной варакторной вставки с зависящей от прилагаемого управляющего электрического напряжения емкостью, перемыкающей широкие стенки волновода по СВЧ току, наводимому пропускаемой ТЕ-волной. 2 н. и 2 з.п. ф-лы, 8 ил.

Настоящее изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот, что позволяет формировать сложные сигналы и создавать эффективные компактные средства радиосвязи с заданным количеством радиоканалов. Способ генерации и частотной модуляции высокочастотного сигнала отличается тем, что цепь прямой передачи выполняют из трехполюсного нелинейного элемента, в качестве цепи обратной связи используют внешнюю обратную связь в виде произвольного четырехполюсника, соединенного с трехполюсным нелинейным элементом, к управляющему и общему электродам трехполюсного нелинейного элемента подключают второй двухполюсник с комплексным сопротивлением. Технический результат изобретения заключается в повышении диапазона генерируемых колебаний и использовании реактивного базиса с сосредоточенными параметрами. 2 н.п. ф-лы, 3 ил.

Модуль свч // 2497241
Изобретение относится к технике сверхвысоких частот (СВЧ), а именно к конструкции корпусов интегральных модулей СВЧ-диапазона, используемых в радиоэлектронной аппаратуре. Техническим результатом является повышение технологичности изготовления модуля СВЧ. Модуль СВЧ содержит: корпус, разделенный, по крайней мере, одной экранной перегородкой на отсеки, внутри которых на основаниях расположены платы с микрополосковыми линиями, а также межплатный СВЧ-переход, установленный в экранной перегородке и соединяющий микрополосковые линии плат, расположенных в смежных отсеках, с наружной стороны корпуса, на участке сопряжения днища корпуса с экранной перегородкой, перпендикулярно плоскости микрополосковых плат выполнен паз, в котором установлен СВЧ-переход, причем геометрические размеры паза выбраны с возможностью обеспечения необходимого позиционирования внутреннего проводника СВЧ-перехода относительно соединяемых микрополосковых линий плат во время установки СВЧ-перехода в пазе экранной перегородки, при этом зазор между внешним проводником СВЧ-перехода и внутренней поверхностью паза заполнен припоем, а с наружной стороны корпуса внешний проводник СВЧ-перехода, посредством пайки соединен с экранными сторонами микрополосковых плат. 4 ил.

Изобретение относится к многополосному соединительному устройству излучения и приема с очень широкой частотной полосой пропускания типа ортомодового соединительного устройства (ОМТ), предназначенному для сверхвысокочастотных телекоммуникационных антенн. Соединительное устройство содержит порт (Р1) распространения всей совокупности частот, корпус и порт (Р2) распространения частотных полос высокой частоты, причем три эти части являются коаксиальными, и щели (24А) связи, предназначенные для распространения низких частотных полос, выполнены в упомянутом корпусе, и каждая из этих щелей связана с волноводом, и это устройство отличается тем, что его корпус (24), объединяющий два упомянутых порта, представляет форму тела вращения, профиль которого изменяется в соответствии с полиномиальным законом и постоянно уменьшается от порта (Р1), имеющего наибольшее поперечное сечение, до порта (Р2), имеющего наименьшее поперечное сечение. Соединительное устройство обеспечивает соединение и разделение очень широких частотных полос пропускания, и две или четыре щели связи широкой частотной полосы необходимы для распространения, как линейной поляризации, так и круговой поляризации после рекомбинации. 4 з.п. ф-лы, 8 ил.

Изобретение относится к технике сверхвысоких частот и предназначено для селекции СВЧ-сигнала. Техническим результатом является получение высокой крутизны склонов полосы заграждения на частоте F0 и сдвиг паразитной полосы заграждения дальше чем 3F0. Полосно-заграждающий фильтр состоит из высокодобротных керамических резонаторов и содержит основной токонесущий проводник, расположенный на одной стороне диэлектрической подложки, на второй поверхности которой размещены отрезки полосковых проводников, имеющие лицевую связь с основным токонесущим проводником и которые имеют гальваническую связь с керамическими резонаторами, причем расположение паразитной полосы заграждения зависит от толщины диэлектрической подложки. 3 ил.
Наверх