Способ получения градиентного каталитического покрытия

Изобретение относится к области нанесения покрытий, в частности к каталитическим оксидным покрытиям, а также к электрохимическим производствам, и может быть использовано при изготовлении электродных материалов. Способ получения градиентного каталитического покрытия на подложке из титана или его сплава включает формирование промежуточного пористого подслоя из оксидов титана и нанесение покрытия методом магнетронного напыления. При нанесении упомянутого покрытия магнетронное напыление металлической компоненты систем (Ti-Ru), (Ti-Ru-Ir) или (Zr-Ru) осуществляют в вакуумной камере в среде плазмообразующего газа аргона и реакционного газа кислорода. Давление аргона поддерживают постоянным в течение всего процесса напыления, а парциальное давление кислорода увеличивают по линейному закону от 0 Па до 8·10-2 Па в течение 10 минут и при установившемся давлении кислорода напыляют указанную металлическую композицию до требуемой толщины с получением градиентного каталитического покрытия, в котором содержание оксидов увеличивается от 0% до 100% от промежуточного слоя к поверхности. Обеспечивается получение коррозионно-стойкого покрытия для увеличения ресурса работы анодов с покрытием с низким содержанием примесей металлов, снижающих коррозионную стойкость покрытия, высокими характеристиками электрокаталитической активности по отношению к процессам, протекающим в системах очистки воды, существенно более высокой механической прочностью самого покрытия и более высокой прочностью сцепления с промежуточным подслоем. 1 табл., 1 пр.

 

Изобретение относится к области нанесения покрытий с функциональными и специальными свойствами, в частности к каталитическим оксидным покрытиям, а также к электрохимическим производствам, в частности к способу изготовления электродов, и может быть использовано при изготовлении электродных материалов для комплексной очистки воды и стоков, для производства хлора и хлорсодержащих соединений и др.

Известно смешанное металлооксидное покрытие [пат. РФ №2379380, опубл. 20.01.2010 г.] на электродной основе из вентильного металла, содержащее оксиды металлов платиновой группы и оксид титана. Недостатком изобретения является сложность процедуры получения покрытия, требующей нанесения нескольких слоев раствора солей металлов и проведения термообработки при температурах от 450°C до 550°C после нанесения каждого слоя. Такие покрытия обладают низкой коррозионной стойкостью вследствие плохой адгезии и характеризуются трещинообразной структурой.

Известен электрод и способ его изготовления [пат. US №6,123,816, опубл. 26.09.2000 г.]. Электрод содержит электрокаталитическое покрытие, нанесенное на подложку из вентильного металла, включающее смесь рутения и/или его оксида и неблагородного металла или его оксида. Покрытие наносится методом конденсации из газовой фазы. Недостатком способа является разность коэффициентов термического расширения (КТР) металла подложки и наносимого покрытия. Разница КТР приводит к возникновению напряжений, являющихся возможной причиной отслоения покрытия в процессе эксплуатации электрода.

В патенте пат. РФ №2288973 [опубл. 10.12.2006 г.] электрод изготавливается из титана или его сплавов с электрокаталитическим покрытием из оксидов титана и рутения при соотношении (мол.%) 25-30:70-75%, при этом он содержит промежуточные подслои из оксидов титана, сформированных методом плазменно-электролитического оксидирования. Электрокаталитическое покрытие из оксидов титана и рутения получают термическим разложением смеси солей рутения и титана - RuCl3·3H2O и TiCl3.

Наиболее близким по техническому решению является пат. РФ №2341587, опубл. 20.12.2008 г. (прототип), в котором методом магнетронного напыления формируют градиентное покрытие на подложке из титана или титанового сплава. Недостатками данного способа являются:

1. Покрытие имеет недостаточно развитую поверхность;

2. Не обеспечивается достаточный уровень электрокаталитической активности покрытия электродов для эффективной работы в системах очистки воды;

3. Не обеспечивается высокая адгезия наносимого покрытия к подложке вследствие разницы в значениях КТР материала подложки и покрытия, что приводит к возникновению внутренних напряжений и возможному отслоению покрытия.

Техническим результатом настоящего изобретения является разработка способа получения градиентных покрытий с предварительным нанесением коррозионностойкого покрытия для увеличения ресурса работы анодов с покрытием с низким содержанием примесей металлов, снижающих коррозионную стойкость покрытия, развитой поверхностью, высокими характеристиками электрокаталитической активности по отношению к процессам, протекающим в системах очистки воды, существенно более высокой механической прочностью самого покрытия и более высокой прочностью сцепления с подложкой.

Технический результат достигается за счет того, что на подложке из титана или титанового сплава формируется пористый подслой из оксидов титана и наносится градиентное оксидное покрытие каталитического класса методом магнетронного напыления металлической композиции систем (Ti-Ru), (Ti-Ru-Ir) или (Zr-Ru) при регулируемом поступлении реакционного газа кислорода в вакуумную камеру по линейному закону изменения давления от 0 Па до 8·10-2 Па в течение 10 мин.

Пористая структура подслоя способствует формированию контакта градиентного оксидного покрытия с подложкой. Содержание оксидов в покрытии увеличивается от 0 до 100%, чем обеспечивается плавное изменение КТР по толщине покрытия, что исключает возникновение внутренних напряжений, приводящих к растрескиванию покрытия и снижению коррозионной стойкости, и обеспечивает высокую адгезию покрытия к подложке.

Формируемый пористый подслой из оксидов титана служит носителем электрокаталитического покрытия и имеет толщину до 10 мкм. Такая структура обеспечивает защиту подложки электрода от коррозии и развитую поверхность электрода.

Пористый подслой из оксидов титана обладает изолирующими свойствами, однако магнетронное напыление покрытий каталитического класса систем (Ti-Ru), (Ti-Ru-Ir) или (Zr-Ru) при регулируемом поступлении реакционного газа кислорода в вакуумную камеру по линейному закону на предварительно полученный на титане или его сплавах пористый подслой из оксидов титана делает подслой проводящим и обеспечивает достаточную электропроводность электрода и его высокую электрокаталитическую активность за счет постепенного увеличения содержания оксидов от промежуточного слоя к поверхности.

Разработанное покрытие обладает высокой эффективностью при работе в системах очистки воды и стоков, принцип действия которых основан на электроуправляемой сорбции. В таблице приводятся результаты анализа проб воды до и после прохождения системы очистки.

Таблица
Результаты анализа проб воды по станции метро «Старая деревня» до и после очистки
№ п/п Показатели Единицы измерения Результаты анализа до очистки Результаты анализа после очистки ПДК по СанПин
1 pH Ед. pH 8,2 8,0 6-9
2 Запах Балл 2 0 2,0
3 Привкус Балл 3 0 2,0
4 Мутность мг/дм3 43 0,28 1,5
5 Цветность град. 39 2,3 20,0
6 Железо общее мг/дм3 1,2 <0,05 0,3
7 Окисляемость мг O2/дм3 8,9 1,7 5,0
8 Ост. акт. хлор мг/дм3 0,50 <0,15 0,8-1,2
9 Ост. алюминий мг/дм3 0,33 <0,04 0,5
10 Аммиак мг/дм3 1,0 0,5 2,0
11 Жесткость мг-экв/дм3 1,3 0,95 7,0
12 Хлороформ мг/дм3 0,03 <0,001 0,2

Сущность способа заключается в следующем. На подготовленной пластине из титана или его сплавов формируют промежуточный пористый оксидный слой, например, методом электрохимического легирования окисляемой поверхности (ЭЛОП). Далее подложку с полученным пористым оксидным подслоем помещают в вакуумную камеру установки магнетронного напыления, предварительно нагревают в вакууме до температуры 400-450°C, затем осуществляют напыление металлической композиции систем (Ti-Ru), (Ti-Ru-Ir) или (Zr-Ru) в среде плазмообразующего газа аргона и реакционного газа кислорода, причем, давление аргона поддерживают постоянным в течение всего процесса напыления, а парциальное давление кислорода изменяют по линейному закону от 0 Па до 8·10-2 Па в течение 10 мин, и по достижению указанного максимального давления кислорода проводят напыление оксидного покрытия требуемой толщины. В результате этого содержание оксидов в покрытии увеличивается от 0% до 100% по тому же закону от промежуточного слоя к поверхности.

Пример осуществления способа.

Пластину из титана марки ВТ 1-0 обезжиривают, промывают дистиллированной водой и высушивают на воздухе.

Подготовленную пластину подвергают электрохимическому легированию окисляемой поверхности в водном растворе солей натрия при pH 8-10 в гальваностатическом режиме при плотности тока 0,1 А/дм, времени оксидирования 15 мин и температуре электролита 25°C. Напряжение изменялось от 0 В до 360 В.

В результате обработки формируется пористый оксидный подслой толщиной 6-8 мкм из диоксида титана.

Далее на подготовленную таким образом поверхность образца на установке магнетронного напыления с использованием металлической мишени композиции (Ti-Ru) производили нанесение градиентного оксидного покрытия. Пластины помещаются в вакуумную камеру установки магнетронного напыления. Камеру откачивают до остаточного давления не выше 2·10-3 Па. Затем образцы нагреваются в вакууме до температуры 400±30°C. После этого в вакуумную камеру подается плазмообразующий газ - аргон до давления (3-5)·10-1 Па и поддерживают на заданном уровне в течение всего процесса напыления. На композиционную мишень (Ti-Ru) подается напряжение и возбуждается плазменный разряд с плотностью тока ~0,25 А/см2. После этого подается реакционный газ кислород в вакуумную камеру при увеличении парциального давления кислорода по линейному закону от 0 Па до 8·10-2 Па в течение 10 мин. Далее покрытие наносится при установившемся давлении кислорода в течение 20 мин.

Заявляемая технология обеспечивает низкое содержание примесей металлов, снижающих коррозионную стойкость покрытия, и однородность состава покрытия, развитую поверхность для обеспечения высокой электрокаталитической активности покрытия при работе в системах очистки воды, отсутствие внутренних напряжений и высокую адгезию покрытия к подложке.

Способ получения градиентного каталитического покрытия на подложке из титана или его сплава, включающий нанесение покрытия методом магнетронного напыления, отличающийся тем, что перед нанесением упомянутого покрытия формируют промежуточный пористый подслой из оксидов титана, а при нанесении упомянутого покрытия магнетронное напыление металлической компоненты систем (Ti-Ru), (Ti-Ru-Ir) или (Zr-Ru) осуществляют в вакуумной камере в среде плазмообразующего газа аргона и реакционного газа кислорода, причем давление аргона поддерживают постоянным в течение всего процесса напыления, а парциальное давление кислорода увеличивают по линейному закону от 0 Па до 8·10-2 Па в течение 10 мин и при установившемся давлении кислорода напыляют указанную металлическую композицию до требуемой толщины с получением градиентного каталитического покрытия, в котором содержание оксидов увеличивается от 0% до 100% от промежуточного слоя к поверхности.



 

Похожие патенты:

Изобретение относится к химическим производствам, в частности к металлоксидному электроду, технологии его изготовления и применению в аналитической химии. .

Изобретение относится к получению комбинированных покрытий для защиты от окисления при высокой температуре металлических материалов, в частности для защиты деталей двигателей от газовой и сульфидной коррозии.

Изобретение относится к области упрочнения режущего твердосплавного инструмента и может быть использовано в машиностроении, в частности в технологии металлообработки.

Изобретение относится к антикоррозионным защитным покрытиям. .

Изобретение относится к оптимизированному твердому покрытию и заготовке, в частности режущему инструменту с нанесенным на него твердым покрытием, а также способу получения заготовки с покрытием, способу резания и способу получения обработанной заготовки.
Изобретение относится к металлургии и машиностроению, а именно к обработке режущего инструмента. .

Изобретение относится к системе теплоизоляционных слоев. .
Изобретение относится к области производства патронов стрелкового оружия различного назначения и предназначено для нанесения защитного полимерного покрытия на поверхность стальных гильз патронов стрелкового оружия.

Изобретение относится к области электротехники, в частности к электропроводному составу в форме хлопьевидных частиц. .

Изобретение относится к электрохимическим производствам, в частности к технологии изготовления электродов, применяемых при электролизе, в электромембранных процессах, а также в электрофорезе и электросинтезе.

Изобретение относится к плазменной технике и может быть использовано для нанесения многослойных покрытий на поверхность изделий в виде тонких пленок. .

Изобретение относится к плазменной технике и может быть использовано для нанесения многослойных покрытий на поверхность изделий в виде тонких пленок. .

Изобретение относится к технологии повышения стойкости режущих инструментов за счет нанесения на их поверхность многокомпонентных износостойких покрытий. .

Изобретение относится к технологии получения многокомпонентных полупроводниковых материалов. .

Изобретение относится к вакуумно-дуговым устройствам для генерации плазмы и может быть использовано для нанесения различного рода металлических покрытий на поверхности изделий.

Изобретение относится к вакуумной технике, а именно к устройствам для вакуумного нанесения пленок с использованием электромагнитного излучения. .

Изобретение относится к способам получения электроизолирующих слоев вакуумным нанесением покрытия. .
Изобретение относится к области металлургии цветных металлов и может быть использовано при производстве распыляемых металлических мишеней для нанесения тонкопленочной металлизации различного назначения в микроэлектронике и других высоких технологиях.
Наверх