Устройство для определения сплошности газожидкостного потока

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом изобретения является повышение точности измерения. Устройство содержит генератор микроволновых колебаний, соединенный выходом через первый элемент связи с вогнутой металлической пластиной первого чувствительного элемента, первый и второй измерители амплитудно-частотных характеристик, соединенных соответственно с выходами первого и второго детекторов, подключенных через второй и пятый элементы связи соответственно к вогнутым металлическим пластинам первого и второго чувствительных элементов, фазометр, соединенный соответствующими входами через третий и четвертый элементы связи с плоской металлической пластиной первого чувствительного элемента и плоскую металлическую пластину второго чувствительного элемента. 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известно устройство для измерения сплошности газожидкостного потока (см. В.А. Викторов, Б.В. Лункин, А.С. Совлуков «Радиоволновые измерения параметров технологических процессов», М.: Энергоиздат, 1989, стр.179), в котором зигзагообразный проводник отрезка линии, укладываемый на поверхности диэлектрической трубы, вместе с металлическим экраном, окружающим диэлектрическую трубу, служит чувствительным элементом. В этом известном устройстве по резонансной частоте отрезка линии определяют сплошность потока.

Недостатком этого устройства является, невысокая точность измерения из-за температурных изменений параметров отрезка линии.

Наиболее близким техническим решением к предлагаемому является принятое автором за прототип устройство для определения сплошности газожидкостного потока (RU №2354959 C1, 10.05.2009) В этом устройстве по разности фаз двух поляризованных параллельно и перпендикулярно волн с коррекцией на диэлектрическую проницаемость контролируемой среды, определяемую резонансной частотой открытого резонатора, выполненного в виде вогнутой и плоской металлических пластин, расположенных на наружных противоположных поверхностях трубопровода одна против другой, определяют сплошность потока.

Недостатком этого устройства следует считать неточность, обусловленную отсутствием информации об изменении перпендикулярной составляющей диэлектрической проницаемости контролируемой среды.

Техническим результатом заявляемого решения является повышение точности измерения сплошности газожидкостного потока.

Технический результат достигается тем, что в устройство для определения сплошности газожидкостного потока, протекающего по диэлектрическому трубопроводу, содержащее генератор электромагнитных колебаний, соединенный выходом через первый элемент связи с вогнутой металлической пластиной первого чувствительного элемента, первый измеритель амплитудно-частотных характеристик, подключенный к выходу первого детектора, соединенного входом через второй элемент связи с вогнутой металлической пластиной первого чувствительного элемента и фазометр, соединенный первым и вторым входами через третий и четвертый элементы связи с плоской металлической пластиной первого чувствительного элемента соответственно, введены второй детектор, второй измеритель амплитудно-частотных характеристик, пятый элемент связи и второй чувствительный элемент, выполненный в виде закрепленных перпендикулярно вогнутой и плоской пластин первого чувствительного элемента на противоположных наружных поверхностях трубопровода одна против другой плоской металлической пластины и вогнутой металлической пластины, причем второй измеритель амплитудно-частотных характеристик подключен к выходу второго детектора, соединенного входом через пятый элемент связи с вогнутой металлической пластиной второго чувствительного элемента.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что при взаимодействии электромагнитных колебаний с газожидкостном потоком, протекающим по диэлектрическому трубопроводу, по преобразованию резонансных частот двух открытых резонаторов и разности фаз двух поляризованных параллельно и перпендикулярно электромагнитных волн, определяют сплошность газожидкостного потока.

Наличие в заявляемом устройстве совокупности перечисленных существующих признаков позволяет решить поставленную задачу определения сплошности газожидкостного потока на основе использования резонансных частот двух открытых резонаторов и разности фаз двух поляризованных параллельно и перпендикулярно электромагнитных волн с желаемым техническим результатом, т.е. высокой точностью измерения.

На чертеже приведена структурная схема устройства.

Устройство, реализующее данное техническое решение, содержит генератор электромагнитных колебаний 1, соединенным выходом с первым элементом связи 2, вогнутую металлическую пластину первого чувствительного элемента 3, второй элемент связи 4, соединенный со входом первого детектора 5, подключенного выходом к первому измерителю амплитудно-частотных характеристик 6, плоскую металлическую пластину первого чувствительного элемента 7, третий элемент связи 8, подключенный к первому входу фазометра 9, плоскую металлическую пластину второго чувствительного элемента 10, четвертый элемент связи 11, вогнутую металлическую пластину второго чувствительного элемента 12, пятый элемент связи 13, соединенный со входом второго детектора 14, подключенного выходом к второму измерителю амплитудно-частотных характеристик 15. На чертеже цифрой 16 обозначен диэлектрический трубопровод.

Устройство работает следующим образом. Электромагнитные колебания с выхода генератора микроволновых колебаний 1 через первый элемент связи 2 направляются в сторону вогнутой металлической пластины 3 первого чувствительного элемента и взаимодействуют с контролируемой средой в диэлектрическом трубопроводе 16.

Как известно, при взаимодействии электромагнитных волн, например, с анизотропным веществом (см. В.Д. Большаков и др. «Радио-геодезические и электрооптические измерения», Москва «Недра» 1985 г., стр.118), показатель преломления волны с плоскостью поляризации, параллельной силовым линиям поля, может изменяться по закону:

h 1 1 = h + Δ n = h + λ B E 2 , ( 1 )

Где h - показатель преломления волны с плоскостью поляризации, ортогональной силовым линиям приложенного электрического поля, λ - длина волны излучения, E - напряженность электрического поля, B - коэффициент (постоянная) Керра, Δn - разность показателей преломления поляризованных волн.

В данном случае падающую (взаимодействующую) на контролируемое анизотропное вещество электромагнитную волну можно разложить на две одинаковые по амплитуде составляющие, которые поляризованы параллельно и перпендикулярно. При этом эти составляющие распространяются с разной скоростью, поскольку значения показателя преломления для них различаются на величину Δ n ˙ .

Согласно предлагаемому техническому решению параллельно поляризованную составляющую, распространяющуюся в сторону плоской металлической пластины 7 первого чувствительного элемента, улавливают третьим элементом связи 8. Одновременно перпендикулярно поляризованную составляющую, распространяющуюся в сторону этой же пластины, принимают четвертым элементом связи 11. После этого сигналы, снимаемые с выходов третьего и четвертого элементов связи, поступают соответственно на первый и второй входы фазометра 9. В результате для измеряемой фазометром разности фаз Ψ между вышеуказанными составляющими можно записать:

ψ = 2 π λ l Δ n = 2 π l B E 2 , ( 2 )

Где l - длина пути волны в анизотропной диэлектрической среде.

Сплошность потока S, связанная с физическим состоянием двухкомпонентных потоков, например, жидкости и газа, характеризует степень однородности и определяется соотношением (см. В.А. Викторов и др. «Высокочастотный метод измерения неэлектрических величин» М., наука, 1978 г, стр.237):

S = v 1 v 1 v 2 , ( 3 )

Где V1 и V2 - соответственно объем жидкости и газа на единице длины трубопровода.

Соотношение (3) показывает, что при отсутствии жидкости (S=0)=0 и V2=max, а при наличии потока жидкости без газовых включений (S=1)=max и V2=0. Отсюда следует, что по величинам объемов и V2, рассчитанных при изменении его внутреннего диаметра d от 0 до его максимального значения, можно судить о сплошности газожидкостного потока.

Анализ газожидкостного потока в трубопроводе показывает, что при формировании объема длина пути l (см. формулу (2)) волны фактически определяет величину площади поперечного сечения потока. Следовательно, определение длины l, связанной с объемом на единице длины трубопровода через площадь поперечного сечения потока, дает возможность определить величину сплошности «потока в трубопроводе. В результате в формуле (2) вместо l следует использовать значение длины пути волны, равное ld/2d-l. Это вытекает из того факта, что при вертикальном (перпендикулярно к потоку) к направлению потока заполнении трубопровода средой длина l может изменяться от 0 до d (диаметр трубопровода). В соответствии с этим выражение (2) можно переписать как:

Ψ = 2 π λ l d 2 d 1 Δ n = 2 π l d 2 d l B E 2 , ( 4 )

Таким образом, при минимальном и максимальном значениях длины пути распространяющейся в измеряемой среде волны, соответствующем отсутствию и наличию потока в трубопроводе, по изменению разности фаз от 0 до Ψmax можно определить сплошность потока. При этом при l=0 (S=0), Ψ=0, а при l=d (S=1) Ψ=Ψmax.

Анализ выражения (4) показывает, что при изменении электрофизических свойств контролируемого диэлектрического анизотропного потока, влияющих на Δn и E, точность измерения сплошности может снижаться.

Согласно эффекту Керра для показателей преломления волн с плоскостью поляризации, параллельной и ортогональной силовым линиям электрического поля, можно записать:

h 1 1 = E 1 1

h = E

Где E11 и E - диэлектрические проницаемости анизотропного потока, обуславливающие соответственно преломление волны в параллельном и ортогональном направлениях. Здесь принимается, что магнитные проницаемости потока µ11 и µ равны единице. Из этого рассуждения вытекает, что в данном случае для повышения точности измерения сплошности необходимо получить информацию о параметрах E11 и E при их изменении.

В рассматриваемом случае для измерения параметров E11 и E используются резонансные частоты первого (первый чувствительный элемент) и второго (второй чувствительный элемент) открытых резонаторов, образованных соответственно вогнутыми 3,12 и плоскими 7,10 металлическими пластинами.

Как уже отмечалось выше, взаимодействие электромагнитной волны с анизотропным веществом в трубопроводе, приводит к возникновению двух ее составляющих.

В данном устройстве параллельно поляризуемая составляющая падающей волны используется для возбуждения первого открытого резонатора, а перпендикулярно поляризованная составляющая - второго открытого резонатора. В результате для их резонансных частот можно записать:

ω 1 1 = π q c 2 ( d 1 + l 1 ) k 1 ,

ω = π q c 2 ( d 1 + ' l 1 ) k 2 ,

Где ω11 и ω - резонансные частоты первого и второго открытых резонаторов соответственно, c - скорость распространения волны в свободном пространстве, q - целое число (практически q>3) d1 - наружный диаметр трубопровода, l1 - расстояние между центрами вогнутых металлических пластин и обращенных к ним поверхностям диэлектрического трубопровода, k1 - параметр, учитывающий совокупное влияние диэлектрических проницаемостей данного трубопровода E и контролируемого анизотропного вещества E11 (преломление волны в параллельном направлении) на скорость распространения волны по трубопроводу, k2 - параметр, учитывающий совокупное влияние диэлектрических проницаемостей ETP и контролируемого анизотропного вещества E (преломление волны в ортогональном направлении) на скорость распространения волны по трубопроводу. Здесь параметры k1 и k2 с определенной точностью представляются как функции диэлектрических проницаемостей ETP, E11 и E. Кроме того влияние E11 и E на скорость распространения волны обосновано спецификой работы открытых резонаторов. Так как ETP зависит от материала, из которого изготовлен трубопровод, то ее в процессе измерения можно считать постоянной. Тогда, как следует из последних формул, при постоянных d1, l1, ETP и с изменение резонансных частот ω11 и ω будет определяться изменением параметров E11 и E.

Согласно предлагаемому техническому решению для измерения резонансных частот ω11 и ω, выходные сигналы детекторов 5 и 14, осуществляющих детектирование сигналов, поступающих от вогнутых пластин первого и второго чувствительных элементов соответственно через второй и пятый элементы связи поступают на входы первого 6 и второго 15 измерителей амплитудно-частотных характеристик соответственно. После этого эти измерительные приборы дают возможность получить информацию соответственно E11 и E.

В рассматриваемом случае значение λ и E задаются генератором электромагнитных колебаний, т.е. без учета влияния диэлектрических проницаемостей E11 и E на характеристики распространения волны через анизотропный поток. Кроме того, постоянная Керра, зависящая от свойств данной среды, выбирается с учетом длины рабочей волны, т.е. λ. Следовательно, формула (4) примет вид:

Ψ = 2 π λ l d 2 d 1 ( E 1 1 E )

Из последней формулы следует, что одновременное измерение параметров E11 и E через резонансные частоты двух открытых резонаторов, дает возможность исключить влияние этих дестабилизирующих факторов на результат определения сплошности анизотропного потока.

Таким образом, в заявленном техническом решении показано, что использование второго чувствительного элемента в виде вогнутой и плоской металлических пластин (второй открытый резонатор) может обеспечить высокую точность измерения сплошности газожидкостного потока.

Устройство для определения сплошности газожидкостного потока, протекающего по диэлектрическому трубопроводу, содержащее генератор электромагнитных колебаний, соединенный выходом через первый элемент связи с вогнутой металлической пластиной первого чувствительного элемента, первый измеритель амплитудно-частотных характеристик, подключенный к выходу первого детектора, соединенного входом через второй элемент связи с вогнутой металлической пластиной первого чувствительного элемента и фазометр, соединенный первым и вторым входами через третий и четвертый элементы связи с плоской металлической пластиной первого чувствительного элемента соответственно, отличающееся тем, что в него введены второй детектор, второй измеритель амплитудно-частотных характеристик, пятый элемент связи и второй чувствительный элемент, выполненный в виде закрепленных перпендикулярно вогнутой и плоской пластинами первого чувствительного элемента на противоположных наружных поверхностях трубопровода одна против другой плоской металлической пластины и вогнутой металлической пластины, причем второй измеритель амплитудно-частотных характеристик переключен к выходу второго детектора, соединенного входом через пятый элемент связи со второй металлической пластиной второго чувствительного элемента.



 

Похожие патенты:

Изобретение относится к технике обнаружения взрывчатых веществ, в частности, к способам обнаружения взрывчатых веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей.

Изобретение относится к области неразрушающего контроля и диагностики материалов и может быть использовано в тех областях науки и техники, где необходимо отслеживать состояние материалов без оказания тестового воздействия на них.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к области неразрушающего контроля изделий и может быть использовано для дефектоскопии магистральных трубопроводов, заполненных газом, нефтью, нефтепродуктами под давлением.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. .

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда.

Изобретение относится к измерительной технике и может быть использовано для измерения влагосодержания, а также других физических свойств (концентрации смеси, плотности) различных материалов и веществ, перемещаемых по ленточным конвейерам, транспортерам.

Изобретение относится к способам измерений и может быть использовано в сельском хозяйстве, мелиорации, при составлении земельного кадастра и т.п. .

Изобретение относится к способам и устройствам измерения концентрации и электрофизических параметров жидких дисперсионных сред и может быть использовано для контроля и регулирования электрофизических параметров и концентрации ферромагнитных частиц (ФМЧ) в жидкости в процессе производства изделий из ферромагнитных материалов, в химической и других областях промышленности.

Изобретение относится к области неразрушающего контроля материалов и изделий

Способ информационного КВЧ воздействия на живой организм относится к области биологии и медицины и может быть использован для стимуляции жизнедеятельности живых организмов или растений, в частности для лечения ряда заболеваний человека и животных. Технический результат - упрощение процесса и обеспечение стабильных параметров информационного крайне высокочастотного (КВЧ) воздействия на живой организм с использованием лазерных систем. Способ заключается в облучении живого организма электромагнитными волнами малой интенсивности с использованием лазерного излучения в качестве электромагнитных волн малой интенсивности. Для облучения биологического объекта применяют лазеры ультракоротких импульсов, например, или лазеры на основе титан-сапфира с керровской линзой, или волоконные лазеры с диодной накачкой, задают период импульсов длительностью от 0,3 до 33,4 пикосекунд, длительность импульсов формируют в зависимости от величины скважности, взятой в диапазоне свыше 1 до 6680 включительно. В частности, в режиме меандра назначают длительность импульсов от 0,15 до 16,70 пикосекунд. При этом формируют импульсы с очертаниями в виде колоколообразной кривой. 4 з.п. ф-лы, 2 табл., 3 ил.

Изобретение предлагает устройство (100) для проверки материала (150), содержащее, по меньшей мере, средства (110) испускания электромагнитного сигнала с несущей частотой Fp для облучения материала (150) и средства (130) приема электромагнитного сигнала. Устройство содержит первые средства модуляции электромагнитного сигнала частотой Fm1, причем указанные средства модуляции расположены на пути распространения сигнала между средствами (110) испускания и материалом (150) и предназначены для пространственного разделения испущенного электромагнитного сигнала, и вторые средства (140) модуляции электромагнитного сигнала частотой Fm2, расположенные на пути распространения сигнала между материалом (150) и средствами (130) приема электромагнитного сигнала и предназначенные для пространственного разделения электромагнитного сигнала, прошедшего сквозь материал. Технический результат - расширение функциональных возможностей устройства. 2 н. и 14 з.п. ф-лы, 5 ил.

Предложен способ сортировки добытого ископаемого материала, такого как ископаемая руда, для разделения добытого ископаемого материала на, по меньшей мере, две категории, при этом, по меньшей мере, одна из которых содержит частицы добытого ископаемого материала, наиболее восприимчивые к микроволновой энергии, и, по меньшей мере, другая из которых содержит частицы добытого ископаемого материала, наименее восприимчивые к микроволновой энергии, причем способ содержит следующие этапы: (а) воздействие микроволновой энергией на частицы добытого ископаемого материала и нагрев частиц в зависимости от восприимчивости материала в частицах; (б) термический анализ частиц с использованием температур частиц в качестве основы для анализа для указания разницы состава частиц; и (в) сортировка частиц на основе результатов термического анализа; При этом способ также содержит контроль атмосферы, через которую перемещаются частицы между позицией, на которой частицы подвергаются воздействию микроволновой энергии, и позицией, на которой частицы подвергаются термическому анализу. Предложенное изобретение обеспечивает осуществление точной сортировки добытого ископаемого материала. 3 н. и 18 з.п. ф-лы, 1 ил.

Предложен способ сортировки добытого ископаемого материала, такого как ископаемая руда, для разделения добытого ископаемого материала на, по меньшей мере, две категории, по меньшей мере, одна из которых содержит частицы добытого ископаемого материала, наиболее восприимчивые к микроволновой энергии, и, по меньшей мере, другая из которых содержит частицы добытого ископаемого материала, наименее восприимчивые к микроволновой энергии, причем способ содержит следующие этапы: (а) воздействие микроволновой энергией на частицы добытого ископаемого материала и нагрев частиц в зависимости от восприимчивости материала в частицах; (б) термический анализ частиц с использованием температур частиц в качестве основы для анализа для указания разницы состава частиц, причем этап термического анализа включает в себя оценку термическим путем частиц на фоновой поверхности и нагрев фоновой поверхности до температуры, отличной от температуры частиц, для обеспечения теплового контраста между частицами и фоновой поверхностью; и (в) сортировку частиц на основе результатов термического анализа. Предложенное изобретение обеспечивает осуществление точной сортировки добытого ископаемого материала. 2 н. и 10 з.п. ф-лы, 1 ил.

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей. Технической задачей изобретения является расширение функциональных возможностей известных технических решений путем определения местонахождения контролируемого объекта, на котором обнаружено взрывчатое или наркотическое вещество. Устройство, реализующее предлагаемый способ, содержит приемопередающую антенну, антенный переключатель, передатчик, приемник, первый и второй усилители высокой частоты, аналого-цифровой преобразователь, измерительное средство, блок памяти, блок индикации, контролируемый объект, процессор, блок сравнения, ключ, первый и второй перемножители, первый и второй фильтры нижних частот, первый и второй экстремальные регуляторы, первый и второй блоки регулируемой задержки, первый и второй корреляторы, индикатор дальности и индикатор азимута. 2 н.п. ф-лы, 1 ил.

Изобретение относится к способам определения неоднородностей электрофизических и геометрических параметров диэлектрических и магнитодиэлектрических покрытий на поверхности металла и может быть использовано при контроле состава и свойств твердых покрытий на металле, при разработке неотражающих и поглощающих покрытий. Повышение вероятности обнаружения малоразмерных неоднородностей и увеличение точности оценки их границ является техническим результатом предложенного изобретении, который достигается за счет того, что проводят сканирование поверхности покрытия с заданным шагом и формирование двумерной матрицы значений дисперсии коэффициента нормального затухания поля по всей поверхности сканирования, а также формирование второй электромагнитной Е волны с последующим расчетом абсолютного отклонения дисперсий коэффициента затухания поля, с построением пространственного распределения средних значений дисперсий коэффициента нормального затухания поля поверхностных медленных волн Eλ1, Eλ2 и Нλ3, пространственная картина которых визуально отображает распределение неоднородностей и их границу. 4 ил.

Изобретение относится к области измерительной техники, в частности может быть использовано в спектроскопии диэлектриков для исследования диэлектрических характеристик веществ, знание которых необходимо при дистанционном электромагнитном зондировании, диэлектрическом каротаже, изучении молекулярного строения вещества. В способе измерения комплексной диэлектрической проницаемости жидких и сыпучих тел в широком диапазоне частот в одной ячейке, используемой в диапазоне частот выше 100 МГц как отрезок коаксиальной линии, а в диапазоне ниже 1 МГц как цилиндрический конденсатор, при этом в диапазоне частот выше 100 МГц диэлектрическая проницаемость вычисляется через измеренные значения комплексного коэффициента передачи электромагнитной волны (параметра матрицы рассеяния S12), а в диапазоне частот ниже 1 МГц - через измерение полной проводимости, новым является то, что для измерений в диапазоне частот 0,3-100 МГц используется дополнительный отрезок коаксиальной линии волновым сопротивлением 50 Ом сечения, большего, чем у ячейки, внутренний диаметр внешнего проводника которой определяют по формуле D 1 = d 1 exp ( Z 01 60 ) , где d1 - внешний диаметр корпуса ячейки; Z01 - волновое сопротивление дополнительного отрезка коаксиальной линии, в которой размещена ячейка, при этом ячейку включают как цилиндрический конденсатор в разрыв внутреннего проводника дополнительного отрезка коаксиальной линии, имеющего два СВЧ разъема, к центральным проводникам которых подключены с одной стороны центральный проводник ячейки, а с другой стороны - корпус ячейки через согласующий переходник в виде отрезка конической линии волновым сопротивлением 50 Ом, и производят его калибровку, для чего определяют параметры эквивалентной схемы дополнительного отрезка коаксиальной линии с расположенной в ней пустой ячейкой, затем заполняют ячейку исследуемым веществом и в диапазоне частот 0,3-100 МГц измеряют комплексный коэффициент передачи (параметр матрицы рассеяния S12) и по формулам, связывающим КДП с параметром S12, определяют КДП. Данный способ измерения КДП обеспечивает ее измерение в одной ячейке с низкой погрешностью во всем частотном диапазоне от 1 кГц до 6000 МГц. 9 ил.

Изобретение относится к области медицины, а именно к устройствам для выявления температурных аномалий внутренних тканей биологического объекта, и может быть использовано для неинвазивного раннего выявления риска рака. Антенна-аппликатор содержит отрезок первого волновода, частично или полностью заполненный диэлектриком, имеющий один закрытый конец и противоположный открытый конец, контактирующий с биологическим объектом, первую систему возбуждения электромагнитных волн, расположенную в первом волноводе между закрытым концом первого волновода и диэлектриком, соединенную с первым входом микроволнового радиотермометра, отрезок второго волновода, частично или полностью заполненный диэлектриком, имеющий один закрытый конец и противоположный открытый конец, контактирующий с биологическим объектом, находящийся внутри первого волновода, а также вторую систему возбуждения электромагнитных волн, расположенную во втором волноводе между закрытым концом второго волновода и диэлектриком, соединенную со вторым входом микроволнового радиотермометра. Устройство для определения температурных изменений помимо антенны-аппликатора содержит также вычислительное устройство, связанное с датчиками температуры и микроволновым радиотермометром. Использование изобретения позволяет повысить чувствительности метода радиотермометрии при выявлении злокачественных опухолей.2 н. и 13 з.п. ф-лы, 12 ил.

Изобретение относится к измерительной технике, а именно к способу определения электропроводности и толщины слоя полупроводника на поверхности диэлектрика, и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев. Предложенный способ включает облучение структуры электромагнитным излучением СВЧ-диапазона, измерение спектра отражения излучения от структуры в выбранном частотном диапазоне при двух различных значениях температуры T1 и T2, далее по полученным зависимостям определяют электропроводность σ1 и σ2 полупроводникового слоя при двух значениях температуры T1 и T2 соответственно, далее выбирают значения температур из диапазона, в котором изменение концентрации носителей заряда связано с ионизацией примесных центров, затем определяют энергию активации примесных центров ΔW, используя соотношение: ΔW=2kT1T2[ln(σ1/σ2)]/(T1-T2), где k - постоянная Больцмана. Одновременное определение электропроводности при пониженных температурах, например 180-190 К, и соответственно энергии активации примесных центров позволяет определить параметры полупроводникового слоя в измеряемой структуре диэлектрик-полупроводник, что является техническим результатом. 2 ил.
Наверх