Свч способ обнаружения и оценки неоднородностей в диэлектрических покрытиях на металле



Свч способ обнаружения и оценки неоднородностей в диэлектрических покрытиях на металле
Свч способ обнаружения и оценки неоднородностей в диэлектрических покрытиях на металле
Свч способ обнаружения и оценки неоднородностей в диэлектрических покрытиях на металле
Свч способ обнаружения и оценки неоднородностей в диэлектрических покрытиях на металле

 


Владельцы патента RU 2507506:

Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к способам определения неоднородностей электрофизических и геометрических параметров диэлектрических и магнитодиэлектрических покрытий на поверхности металла и может быть использовано при контроле состава и свойств твердых покрытий на металле, при разработке неотражающих и поглощающих покрытий. Повышение вероятности обнаружения малоразмерных неоднородностей и увеличение точности оценки их границ является техническим результатом предложенного изобретении, который достигается за счет того, что проводят сканирование поверхности покрытия с заданным шагом и формирование двумерной матрицы значений дисперсии коэффициента нормального затухания поля по всей поверхности сканирования, а также формирование второй электромагнитной Е волны с последующим расчетом абсолютного отклонения дисперсий коэффициента затухания поля, с построением пространственного распределения средних значений дисперсий коэффициента нормального затухания поля поверхностных медленных волн Eλ1, Eλ2 и Нλ3, пространственная картина которых визуально отображает распределение неоднородностей и их границу. 4 ил.

 

Предлагаемое изобретение относится к способам определения неоднородностей электрофизических и геометрических параметров диэлектрических и магнитодиэлектрических покрытий на поверхности металла и может быть использовано при контроле состава и свойств твердых покрытий на металле при разработке неотражающих и поглощающих покрытий, а также в химической, лакокрасочной и других отраслях промышленности.

Известен СВЧ способ контроля нарушения сплошности, базирующийся на воздействии контролируемой среды или объекта на сигнал, прошедший через образец /см. Приборы для неразрушающего контроля материалов и изделий. Справочник под ред. Клюева. T.1. - М.: Машиностроение, 1976. C.198/.

Недостатками данного способа являются: низкая точность локализации и оценки геометрических и электрофизических параметров неоднородностей из-за влияния переотражений; необходимость согласования границы раздела с приемной и излучающей антеннами; невозможность измерения неоднородностей покрытий на металлической подложке; трудность реализации способа для объекта с большими геометрическими размерами.

Известен СВЧ способ контроля внутреннего состояния объекта в основе которого лежит воздействие контролируемой среды или объекта на сигнал, прошедший через образец, либо отраженный от него / см. Приборы для неразрушающего контроля материалов и изделий. Справочник под ред. Клюева. T.1. - М.: Машиностроение, 1976. С.201.

Недостатками данного способа являются: низкая точность локализации и оценки геометрических и электрофизических параметров неоднородностей из-за влияния переотражений; необходимость начального согласования плоскостей поляризации приемной и передающей антенн, когда сигнал в приемной антенне равен нулю; трудность реализации способа для многослойных сред.

Известен СВЧ способ контроля нарушения сплошности, заключающийся в создании электромагнитного поля в объеме контролируемого материала и последующей регистрации изменения параметров, характеризующих высокочастотный сигнал, отраженный от дефекта или поверхности образца /см. Приборы для неразрушающего контроля материалов и изделий. Справочник под ред. Клюева. T.1. - М.: Машиностроение, 1976. C.199/.

Недостатками данного способа являются: наличие непосредственной электромагнитной связи между приемной и передающей антеннами; влияние изменения зазора между поверхностью контролируемого материала и приемной антенной; малая чувствительность и низкая точность определения и оценки геометрических и электрофизических параметров неоднородностей;

наличие зон необнаружения дефекта из-за интерференции волн; большие габариты измерительной системы, реализующей данный способ.

Известен СВЧ способ локализации неоднородностей диэлектрических и магнитодиэлектрических покрытий на металле и оценки их относительной величины / Патент №2256165, МПК7 G01N 22/02, G01R 27/26. СВЧ способ локализации неоднородностей диэлектрических и магнитодиэлектрических покрытий на металле и оценка их относительной величины /П.А. Федюнин, Д.А. Дмитриев, С.Р. Каберов (РФ); №2003126856/09. Заявл. 01.09.03. Опубл. 10.07.05. Бюл №19/, заключающийся в создании электромагнитного поля поверхностных медленных волн над диэлектрическим покрытием на электропроводящей подложке, измерении затухания напряженности поля поверхностной медленной волны в нормальной плоскости относительно ее распространения по всей поверхности покрытия и последующей оценки площади неоднородности по рассчитанным значениям коэффициентов затухания поля.

Недостатками данного способа являются: малая чувствительность и не высокая точность определения и оценки геометрических и электрофизических параметров неоднородностей; малая вероятность их обнаружения; отсутствие возможности визуализации распределения неоднородностей по площади сканируемой поверхности.

Наиболее близким по технической сущности к заявленному изобретению (прототипом) является СВЧ способ интроскопии неоднородности диэлектрических и магнитодиэлектрических покрытий поверхностной медленной волной / Патент №2301987, МПК7 G01N 15/08, G01R 27/32. СВЧ способ интроскопии неоднородности диэлектрических и магнитодиэлектрических покрытий поверхностной медленной волной/ П.А. Федюнин, Д.А. Дмитриев, А.А. Панов; опубл. 27.06.07. Бюл. №18/, заключающийся в создании электромагнитного поля поверхностной медленной Е-волны над диэлектрическим покрытием на электропроводящей подложке, измерении затухания напряженности поля поверхностной медленной волны в нормальной плоскости относительно ее распространения по всей поверхности покрытия, определении математического ожидания и дисперсии коэффициента нормального затухания электрического поля и последующей оценки площади неоднородности по рассчитанным значениям дисперсий коэффициентов затухания поля.

Недостатками данного способа являются: малая вероятность обнаружения малоразмерных неоднородностей и низкая точность оценки границ неоднородностей.

Техническим результатом изобретения является повышение вероятности обнаружения малоразмерных неоднородностей и увеличение точности оценки их границ по всей сканируемой поверхности.

Указанный технический результат достигается тем, что в известном СВЧ способе обнаружения и оценки неоднородностей в диэлектрических покрытиях на металле, заключающемся в создании электромагнитного поля поверхностной медленной волны Е-типа в объеме контролируемого диэлектрического покрытия на электропроводящей подложке, сканировании поверхности покрытия с заданным шагом, регистрации изменения напряженности электрического поля, вычислении коэффициента нормального затухания поля поверхностной медленной волны, расчете его математического ожидания и дисперсии в каждой точке сканирования, формировании двумерной матрицы значений дисперсии коэффициента нормального затухания поля по всей поверхности сканирования и оценке по пространственной картине распределения дисперсии границ неоднородностей, после формировании двумерной матрицы значений дисперсии коэффициента нормального затухания поля по всей поверхности сканирования, дополнительно возбуждают поверхностные электромагнитные волны Е-волну, длина волны λ2 которой меньше длины волны λ1 первого электромагнитного поля так, что произведение коэффициента фазы второй электромагнитной волны βE2 на толщину покрытия b удовлетворяло условию β E 2 b < < π 2 и Н-волну на длине волны λ3 так, чтобы выполнялось условие π/2<βHb≤π/2+ΔH, где ΔH<<π/2, последовательно регистрируют изменения напряженности поля волн электрического Еλ2 и магнитного Hλ3 типа, рассчитывают коэффициент нормального затухания электрического поля, его математическое ожидание и дисперсию в каждой точке сканирования и их значения запоминают в микропроцессорном устройстве, усредняют значения дисперсий коэффициента затухания поля для волн электрического типа D α λ 1 , D α λ 2 и для волны магнитного типа D α λ 3 по всей площади сканирования в соответствии с выражением

D S t = i = 1 m k = 1 p D α λ t i k m p ,

где t∈(1, 2, 3) - порядковый номер возбуждаемых волн Eλ1, Еλ2 и Нλ3; i∈(1…m) - координаты точек измерений по оси x; k∈(1…p) - координаты точек измерения по оси z,

рассчитывают абсолютное отклонение дисперсий коэффициента затухания поля Δ D λ 1 i , k , Δ D λ 2 i , k , Δ D λ 3 i , k для каждой волны Eλ1, Eλ2 и Hλ3 от среднего и усредняют их значение в каждой точке сканирования поверхности в соответствии с выражением:

Δ D i , k = Δ D λ 1 i , k + Δ D λ 2 i , k + Δ D λ 3 i , k 3 ,

формируют двумерную матрицу средних значений дисперсий коэффициента нормального затухания поля по всей поверхности сканирования, строят по всей поверхности сканирования пространственное распределение средних значений дисперсий коэффициента нормального затухания поля поверхностных медленных волн Eλ1, Еλ2 и Нλ3, пространственная картина которых визуально отображает распределение неоднородностей и их границу.

На фиг.1 представлена схема реализации предлагаемого СВЧ способа обнаружения и оценки неоднородностей в диэлектрических и магнитодиэлектрических покрытиях на металле, где цифрами обозначено 1 - устройство возбуждения медленных поверхностных волн; 2 - металлическая подложка; 3 - слой исследуемого покрытия; 4 - вертикально ориентированные приемные вибраторы; 5 - горизонтально ориентированные приемные вибраторы; 6 - внутренние дефекты.

С помощью устройства возбуждения медленных поверхностных волн, представляющего собой рупорную антенну 1 последовательно возбуждают поверхностные электромагнитные волны: две Е волны Eλ1 и Еλ2 на близких длинах волн генератора λг1 и λг2 так, чтобы произведение коэффициента фазы на толщину покрытия удовлетворяло условию: β E 2 b < < π 2 и Hλ3 волну так, чтобы π/2<βHb≤π/2+ΔH, где ΔH<<π/2 (фиг.2), вдоль расположенного на электропроводящей металлической подложке 2, диэлектрического покрытия 3 с неизвестными параметрами: толщиной слоя b, относительной диэлектрической проницаемостью ε, относительной магнитной проницаемостью µ, модулем волнового сопротивления ZB и фазовой скоростью VФ.

С помощью системы вертикально ориентированных приемных вибраторов 4 в начальной точке измерений (x1, z1) расположенной на линии максимума диаграммы направленности (ДН) в дальней зоне (ДЗ) устройства возбуждения медленной поверхностной волны 1, направленной вдоль оси Z, последовательно измеряют напряженности поля волн Еλ1 и Еλ2, а с помощью горизонтально ориентированных вибраторов 5 напряженность поля поверхностной волны Hλ3 волны в нормальной плоскости относительно направления их распространения (в точке y). Делают первоначальный шаг Δy=d и измеряют напряженности поля волн Eλ1, Eλ2 и Hλ3 поверхностной волны в точке y+d.

Для каждой волны Eλ1, Еλ2 и Нλ3 рассчитывают коэффициенты нормального затухания αλt(1), из выражения:

α λ t ( 1 ) = 1 d ln [ E λ t ( y ) E λ t ( y + d ) ] '

где Eλt(y), и Eλt(y+d), - напряженности поля поверхностной волны в нормальной плоскости относительно направления распространения в разнесенных точках измерений y и y+d; d - расстояние (шаг) между точками измерений; t∈(1, 2, 3) - порядковый номер возбуждаемых волн Eλ1, Еλ2 и Нλ3.

Переводят приемные вибраторы в следующую точку, делая постоянный, либо адаптивно изменяющийся относительно величины изменения коэффициента затухания шаг Δy и повторяют измерения.

Вычисляют все значения α λ 1 j , α λ 2 j , α λ 3 j , для каждой волны Еλ1, Еλ2 и Hλ3 соответственно, где j∈[1,… n-1] - количество точек измерений (по оси Y).

По значениям коэффициентов нормального затухания электрического поля поверхностных медленных волн α λ 1 j , α λ 2 j , α λ 3 j , определяют математические ожидания m α λ 1 1,1 , m α λ 2 1,1 , m α λ 3 1,1 в данной точке измерения (x1, z1):

m α λ 1 1,1 = 1 n j = 1 n 1 α λ 1 j ; m α λ 2 1,1 = 1 n j = 1 n 1 α λ 2 j ; m α λ 3 1,1 = 1 n j = 1 n 1 α λ 3 j

и дисперсии коэффициентов нормального затухания D α λ 1 1,1 , D α λ 2 1,1 , D α λ 3 1,1

D α λ 1 1,1 = 1 n j = 1 n 1 ( α λ 1 j m α λ 1 1,1 ) 2 ; D α λ 2 1,1 = 1 n j = 1 n 1 ( α λ 2 j m α λ 2 1,1 ) 2 ; D α λ 3 1,1 = 1 n j = 1 n 1 ( α λ 3 j m α λ 3 1,1 ) 2

В микропроцессорном устройстве (МПУ) запоминаются координаты точки (x1, z1) и значения m α λ 1 1,1 , m α λ 2 1,1 , m α λ 3 1,1 и D α λ 1 1,1 , D α λ 2 1,1 , D α 3 1,1 .

Делают шаг Δz в направлении максимума ДН и проводят аналогичный цикл измерений коэффициентов затуханий, расчетов математического ожидания и дисперсии в точке (x1, z1+Δz) и так далее в пределах заданного изменения размера покрытия по оси Z от начального z1 до конечного zp.

Делают шаг Δx, перемещая апертуру излучателя и приемные вибраторы, и производят аналогичный цикл измерений коэффициентов затуханий по направлению максимума ДН по оси Z в обратном направлении от zp до z1.

Производят сканирование всей поверхности в пределах заданного изменения размера покрытия (фиг.1), где k∈(1…p) - количество точек измерений по оси z; i∈(1…m) - количество точек измерений по оси х.

На фиг.3а приведены графики распределения дисперсий D α λ 1 1,1 , D α λ 2 1,1 , D α 3 1,1 для каждой волны Eλ1, Eλ2 и Нλ3 по сканируемой области покрытия с внесенными неоднородностями. Их анализ показывает, что обнаружение неоднородностей по дисперсии только на одной из длин волн Еλ1, Еλ2 и Нλ3 не позволяет обнаружить неоднородности с размерами менее 2 мм.

Далее производят усреднение значений дисперсий D α λ 1 1,1 , D α λ 2 1,1 , D α 3 1,1 по всей площади сканирования, для каждой длины волны Eλ1, Еλ2 и Нλ3 и получают три «фоновых» величины дисперсии:

D S t = i = 1 m k = 1 p D α λ t i k m p

рассчитывают абсолютное отклонение дисперсий коэффициента затухания поля - получают «отфоновые» дисперсии по формуле:

Δ D t i , k = | D α λ t i , k D S t |

и усредняют значения «отфоновых» дисперсий Δ D t i , k для волн Eλ1, Eλ2 и Hλ3 в каждой точке измерения:

Δ D i , k = Δ D λ 1 i , k + Δ D λ 2 i , k + Δ D λ 3 i , k 3

В микропроцессорном устройстве для каждой точки измерений сканируемой поверхности запоминается значение средней «отфоновой» дисперсии ΔDi,k.

Формируют двумерную матрицу средних значений дисперсий коэффициента нормального затухания поля по всей поверхности сканирования и строят пространственное распределение средних значений дисперсий коэффициента нормального затухания поля поверхностных медленных волн Eλ1, Eλ2 и Нλ3, пространственная картина которых отображает границу и «информативные» параметры обнаруженных неоднородностей.

На фиг.3б представлена экспериментальная зависимость средней «отфоновой» дисперсии коэффициентов затухания как функции геометрических и электрофизических параметров неоднородностей в координатах XYZ полученная при сканировании поверхности диэлектрического покрытия с различными неоднородными включениями, такими как простые отверстия диаметрами 7 мм и 2 мм и ферритовый шарик диаметром 2 мм.

По полученной трехмерной зависимости средней «отфоновой» дисперсии коэффициентов затухания можно оценить параметры неоднородности:

- «фоновое» значение D S t есть мера средней неоднородности покрытия;

- по объемной картине распределения ΔDi,k можно оценить площадь

основания объемной фигуры над неоднородностью, путем суммирования шагов измерений Дxi, ,Дzk по осям x и z в области неоднородности (фиг 3б):

S о с н = н е о д Δ x i Δ z k ,

- «информативный» объем фигуры

V ф и г у р ы = Δ D i , k S о с н

- высоту «фигуры» - hi=max(ΔDi,k).

Для оценки эффективности разработанного способа в сравнении его со способами приведенными в [Патент РФ №2256165] и [Патент РФ №2301987] проведены экспериментальные исследования по обнаружению неоднородностей в диэлектрических покрытиях на металлическом основании.

В ходе натурного эксперимента были исследованы различные виды диэлектрических покрытий на металлическом основании. В каждое из них были внесены неоднородности типа «отверстие» с различными диаметрами.

Для расчета вероятностей обнаружения неоднородностей был применен статистический критерий оптимальности Неймана-Пирсона [Методы неразрушающих испытаний / Под ред. Р. Шарпа. М.: Мир, 1972. 496 с.].

На основе данного подхода получены экспериментальные кривые обнаружения неоднородностей типа «отверстие» с различными диаметрами На рисунке (фиг.4) приведены кривые вероятностей обнаружения неоднородностей от их размера (диаметра), кривая 1 соответствует способу-прототипу, а кривая 2 - предлагаемому способу. Из анализа графика видно, что неоднородность с диаметром d=1 мм способом-прототипом обнаруживается с вероятностью P=0,035, а заявленным способом с P=0,35, т.е. имеется повышение вероятности правильного обнаружения неоднородности на порядок.

Таким образом, предлагаемый способ позволяет повысить вероятность обнаружения малоразмерных неоднородностей (с поперечными размерами 1-3 мм) в непроводящих покрытиях на металлической подложке, а также повысить точность оценки их относительных границ.

СВЧ способ обнаружения и оценки неоднородностей в диэлектрических покрытиях на металле, заключающийся в создании электромагнитного поля поверхностной медленной волны Е-типа в объеме контролируемого диэлектрического покрытия на электропроводящей подложке, сканировании поверхности покрытия с заданным шагом, регистрации изменения напряженности электрического поля, вычислении коэффициента нормального затухания поля поверхностной медленной волны, расчете его математического ожидания и дисперсии в каждой точке сканирования, формировании двумерной матрицы значений дисперсии коэффициента нормального затухания поля по всей поверхности сканирования и оценке по пространственной картине распределения дисперсии границ неоднородностей, отличающийся тем, что после формирования двумерной матрицы значений дисперсии коэффициента нормального затухания поля по всей поверхности сканирования, дополнительно возбуждают поверхностные электромагнитные волны Е-волну, длина волны λ2 которой меньше длины волны λ1 первого электромагнитного поля так, что произведение коэффициента фазы второй электромагнитной волны βE2 на толщину покрытия b удовлетворяло условию β E 2 b < < π 2 , и Н-волну на длине волны λ3 так, чтобы выполнялось условие
π/2<βHb≤π/2+ΔH, где ΔH<<π/2,
последовательно регистрируют изменения напряженности поля волн электрического Еλ2 и магнитного Нλ3 типа, рассчитывают коэффициент нормального затухания электрического поля, его математическое ожидание и дисперсию в каждой точке сканирования и их значения запоминают в микропроцессорном устройстве,
усредняют значения дисперсий коэффициента затухания поля для волн электрического типа D α λ 1 , D α λ 2 и для волны магнитного типа D α λ 3 по всей площади сканирования в соответствии с выражением
D S t = i = 1 m k = 1 p D α λ t i k m p ,
где t∈(1, 2, 3) - порядковый номер возбуждаемых волн Eλ1, Eλ2 и Hλ3; i∈(1…m) - координаты точек измерений по оси x; k∈(1…p) - координаты точек измерения по оси z,
рассчитывают абсолютное отклонение дисперсий коэффициента затухания поля Δ D λ 1 i , k , Δ D λ 2 i , k , Δ D λ 3 i , k для каждой волны Eλ1, Eλ2, и Нλ3 от среднего и усредняют их значение в каждой точке сканирования поверхности в соответствии с выражением:
Δ D i , k = Δ D λ 1 i , k + Δ D λ 2 i , k + Δ D λ 3 i , k 3 ,
формируют двумерную матрицу средних значений дисперсий коэффициента нормального затухания поля по всей поверхности сканирования,
строят по всей поверхности сканирования пространственное распределение средних значений дисперсий коэффициента нормального затухания поля поверхностных медленных волн Eλ1, Eλ2 и Нλ3, пространственная картина которых визуально отображает распределение неоднородностей и их границу.



 

Похожие патенты:

Изобретение относится к области неразрушающего контроля материалов и изделий. .

Изобретение относится к области неразрушающего контроля изделий и может быть использовано для дефектоскопии магистральных трубопроводов, заполненных газом, нефтью, нефтепродуктами под давлением.

Изобретение относится к области обнаружения локальных дефектов в проводниках с использованием акустической эмиссии и может найти применение для выявления скрытых локальных дефектов в различных металлических конструктивных элементах, находящихся в статическом состоянии или в процессе движения.

Изобретение относится к устройствам неразрушающего контроля и может использоваться для обнаружения неоднородностей в строительных конструкциях. .

Изобретение относится к области подповерхностной радиолокации. .

Изобретение относится к методам и технике неразрушающего контроля, например с помощью сверхвысоких частот, при одностороннем доступе к контролируемому объекту, и может найти применение для обнаружения в стенах и перекрытиях строительных сооружений инородных металлических или диэлектрических предметов искусственного и естественного происхождения, в том числе расположенных за металлической арматурой или закрепленных непосредственно на арматуре, или расположенных между прутками арматуры со стороны, противоположной направлению облучения электромагнитным сигналом, и, в частности, в стенах строительных сооружений, выполненных по технологии цельнозаливных железобетонных конструкций, а также скрытых дефектов в виде пустот и трещин, металлической арматуры, санитарно-технических коммуникаций, кабельных магистралей, электрических и телефонных проводок.

Изобретение относится к методам и технике неразрушающего контроля, например с помощью сверхвысоких частот, и предназначено для контроля дефектов в стенах и перекрытиях строительных сооружений, в частности армированных, при одностороннем доступе и может найти применение для обнаружения инородных металлических или диэлектрических предметов искусственного или естественного происхождения, расположенных за металлической арматурой, или закрепленных непосредственно на арматуре, или расположенных между прутками арматуры, со стороны противоположной направлению облучения электромагнитным сигналом, и в частности, в стенах строительных сооружений, выполненных по технологии цельнозаливных железобетонных конструкций.

Изобретение относится к методам и технике неразрушающего контроля, например с помощью сверхвысоких частот, и предназначен для обнаружения дефектов в стенах и перекрытиях строительных сооружений при одностороннем доступе и может найти применение для обнаружения инородных металлических или диэлектрических предметов искусственного или естественного происхождения, в том числе расположенных за металлической арматурой, или закрепленных непосредственно на арматуре, или расположенных между прутками арматуры, со стороны противоположной направлению облучения электромагнитным сигналом, и в частности, в стенах строительных сооружений, выполненных по технологии цельнозаливных железобетонных конструкций.
Изобретение относится к измерительной технике, в частности к контролю поверхности металлических сооружений и объектов и может быть использовано для обнаружения и контроля развития дефектов на поверхностях металлических сооружений и объектов, установленных в коррозионных средах различной степени агрессивности в условиях подземного, атмосферного, морского или речного воздействия, в частности для обнаружения и контроля развития трещин на покрытых изоляций поверхностях нефте- или газопроводов.

Изобретение относится к измерительной технике, а именно к способу определения электропроводности и толщины слоя полупроводника на поверхности диэлектрика, и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев. Предложенный способ включает облучение структуры электромагнитным излучением СВЧ-диапазона, измерение спектра отражения излучения от структуры в выбранном частотном диапазоне при двух различных значениях температуры T1 и T2, далее по полученным зависимостям определяют электропроводность σ1 и σ2 полупроводникового слоя при двух значениях температуры T1 и T2 соответственно, далее выбирают значения температур из диапазона, в котором изменение концентрации носителей заряда связано с ионизацией примесных центров, затем определяют энергию активации примесных центров ΔW, используя соотношение: ΔW=2kT1T2[ln(σ1/σ2)]/(T1-T2), где k - постоянная Больцмана. Одновременное определение электропроводности при пониженных температурах, например 180-190 К, и соответственно энергии активации примесных центров позволяет определить параметры полупроводникового слоя в измеряемой структуре диэлектрик-полупроводник, что является техническим результатом. 2 ил.

Изобретение относится к области дефектоскопии с использованием сверхвысоких частот, а именно к способам определения дефектов теплозащитных и теплоизоляционных покрытий изделий ракетно-космической техники. Повышение точности определения глубины залегания дефекта является техническим результатом заявленного изобретения. Способ включает в себя регистрирацию характеристики электромагнитного СВЧ-поля в контролируемом объекте на нескольких частотах, отличающийся тем, что СВЧ-датчик облучает контролируемый объект, представляющий собой слой диэлектрического материала, наклеенного на металлическую несущую конструкцию, непрерывным многочастотным сигналом и построчно сканирует внешнюю поверхность контролируемого объекта, при этом дискретно регистрируется с постоянным шагом для каждой из частот сигнал, отраженный от контролируемого объекта, при регистрации отраженного сигнала происходит его интерференция с опорным сигналом генератора, в результате которой получается радиоголограмма, при последующем восстановлении которой на получаемом изображении выявляются дефекты внутреннего строения контролируемого объекта и поверхностные дефекты на границе раздела контролируемый объект-металл. 4 ил.

Предложена сенсорная система для анализа свойств диэлектрического материала с помощью радиочастотного сигнала, содержащая материал (30), который сформирован из матрицы и множества частиц (40), не обладающих свойствами изолятора и, по существу, равномерно распределенных внутри матрицы таким образом, что материал по меньшей мере в одном направлении обладает когерентной электрической периодичностью. Кроме того, в системе имеется приемник (10), выполненный с возможностью приема исходного радиочастотного (РЧ) сигнала и возвращенного РЧ сигнала, причем исходный РЧ сигнал отражается данными частицами с формированием возвращенного РЧ сигнала. Изменение положения одной или более частиц не изоляторов приводит к изменению возвращенного РЧ сигнала, так что по возвращенному РЧ сигналу можно определить изменение свойств материала и проводить непрерывный мониторинг аномалий в нем. Заявленный способ позволяет повысить степень контроля качества указанного материала. 2 н. и 30 з.п. ф-лы, 18 ил.

Устройство (1) конвейерной транспортировки содержит конвейер (3, 3.5, 5) с конвейерным элементом (3.1, 3.51, 5.1). Датчик (10) предусмотрен для регистрации поверхности конвейера. Сигнал датчика предварительно обрабатывает электрическая цепь (20). После обработки могут быть сгенерированы рабочие переменные и/или поврежденные или недостающие конвейерные элементы (3.1, 3.51, 5.1) могут быть обнаружены. Датчик является антенной (10.1), работающей в радиочастотном диапазоне, а конвейерный элемент (3.1, 3.51, 5.1) может перемещаться в ближней зоне антенны (10.1). Обеспечивается контроль работы конвейера компактной конструкцией датчика. 2 н. и 9 з.п. ф-лы, 13 ил.

Предлагаемое устройство относится к области подповерхностной радиолокации с использованием сверхширокополосных сигналов, а именно к устройствам определения расположения и формы неоднородностей и включений в строительных конструкциях и сооружениях и может найти применение в следующих областях: контрразведывательной деятельности по выявлению подслушивающих устройств; оперативно-розыскной деятельности правоохранительных органов; зондировании строительных конструкций с целью определения положения арматуры, пустот и других неоднородностей; зондировании особо важных строительных конструкций (взлетно-посадочных полос, аэродромов, стартовых площадок для запуска ракет, мостов, переходов, тоннелей метрополитена, вокзалов, стадионов, бассейнов и т.д.) с целью определения скрытых дефектов в них; зондировании завалов и разрушений после землетрясений, террористических взрывов и взрывов газа в процессе поисково-спасательных работ с целью обнаружения живых людей под завалами и оперативного оказания им помощи. Технической задачей изобретения является расширение функциональных возможностей устройства путем обнаружения живых людей под завалами, возникшими в результате разрушения строительных конструкций и сооружений после взрывов и землетрясений. Устройство зондирования строительных конструкций содержит портативную ЭВМ 1, поверхность 2 строительной конструкции, электронный блок 3, антенный блок 4, высокочастотный генератор 5, контроллер 6, приемник 7, передающую антенну 8, приемную антенну 9, объект 10, триггер 11, линии задержки 12 и 14, усилитель 13, блок 15 вычитания, интегратор 16, блок 17 деления, блок 18 сравнения, блок 19 формирования эталонного напряжения, аналого-цифровой преобразователь 20, интерфейс 21, ключ 22, жидкокристаллический индикатор 23, звуковой индикатор 24, выключатель 25, квадратурный демодулятор 26, предварительные усилители 27 и 28, мультиплексоры 29 и 30, многоканальные полосовые фильтры 31 и 32, демультиплексоры 33 и 34, электронные короткозамыкающие ключи 35 и 36, низкочастотные фильтры 37 и 38. 1 ил.
Наверх