Способ пеленгования с повышенной разрешающей способностью

Изобретение относится к измерительной технике и может быть использовано в акустике и радиотехнике для восстановления изображений и определения с повышенной разрешающей способностью азимутального и угломестного направлений на источники волн различной природы: упругих волн в различных средах, в частности звуковых, волн на поверхности жидкости и электромагнитных волн. Достигаемым техническим результатом изобретения является повышение эффективности пеленгования близко расположенных источников излучения сигналов волн различной природы. Повышение вычислительной эффективности пеленгования близко расположенных источников излучения сигналов обеспечивается за счет формирования сигналов N-направленной комплексной фазирующей функции и вычисления циклической свертки на основе алгоритма быстрого преобразования Фурье. 2 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к измерительной технике и может быть использовано в акустике и радиотехнике для восстановления изображений и определения с повышенной разрешающей способностью азимутального и угломестного направлений на источники волн различной природы: упругих волн в различных средах, в частности звуковых, волн на поверхности жидкости и электромагнитных волн.

Достижение теоретически предельной точности восстановления изображений и определения пространственных координат в условиях многолучевого распространения волн ограничивается существенной априорной неопределенностью относительно параметров среды распространения и несовершенством известных способов обработки сигналов, в настоящее время не решающих эффективно проблему пространственного разделения близко расположенных источников сигналов.

Известен способ пеленгования с повышенной разрешающей способностью [1], включающий

преобразование входных сигналов, принятых отдельными элементами антенной решетки, в цифровые данные,

формирование из цифровых данных сигнала комплексной пространственной корреляционной матрицы R ˙ ,

формирование сигнала углового спектра по формуле

P ( α m , β m ) = ( A ˙ m + R ˙ 1 A ˙ m ) 1 , где - сигналы столбцов матрицы фазирующей функции ,

определение азимута α0 и угла места β0 каждого луча принятого многолучевого сигнала по максимумам сигнала углового спектра P(αmm).

Данный способ обеспечивает ограниченное повышение разрешающей способности пеленгования по сравнению с классическим способом формирования луча.

Известен способ пеленгования с повышенной разрешающей способностью [2], свободный от этого недостатка и принятый за прототип. Согласно этому способу:

1. Принимают многолучевой сигнал источника акустического или электромагнитного излучения антенной решеткой из N элементов, расположенных равномерно по окружности, и формируют ансамбль сигналов xn(t), зависящих от времени t и номера антенного элемента n=0,…,N-1.

2. Синхронно преобразуют ансамбль принятых сигналов xn(t) в цифровые сигналы xn(z), где z - номер временного отсчета сигнала.

3. Преобразуют цифровые сигналы xn(z) в сигнал комплексной пространственной корреляционной матрицы , описывающий амплитуды и фазы взаимных сигналов, принятых элементами решетки.

4. Преобразуют сигнал пространственной корреляционной матрицы в сигналы собственных значений λk и собственных векторов , где k = 0, N 1 ¯ - текущий номер;

5. Сравнивают сигналы собственных значений λk с порогом и при непревышении порога сигнал соответствующего собственного вектора идентифицируют как сигнал собственного вектора, принадлежащий шумовому подпространству где - элементы вектора υ ˙ j , j = 0, J 1 ¯ - текущий номер сигналов собственных векторов, принадлежащих шумовому подпространству, a J - их число, J<N. Порог выбирают исходя из ожидаемого уровня мощности шумов.

6. Формируют и запоминают N×N матрицу сигналов собственных векторов шумового подпространства ;

7. Формируют и запоминают двумерный сигнал комплексной фазирующей функции размером N×M, зависящий от заданной частоты приема и описывающий возможные направления прихода сигнала от каждого потенциального источника, где М - число угловых положений, соответствующих заданным потенциально возможным направлениям прихода сигналов по азимуту αm и углу места βm, m = 0, M 1 ¯ - номер направления. Отдельный элемент двумерного сигнала описывается соотношением где dnm,βm) - комплексная диаграмма направленности n-го элемента; r, αn - цилиндрические координаты антенных элементов кольцевой решетки; f - заданная частота приема; с - скорость распространения волны.

8. Используя сформированную матрицу собственных векторов шумового подпространства и сигнал фазирующей функции , формируют сигнал углового спектра по формуле , где - сигналы столбцов матрицы фазирующей функции .

9. По максимумам сигнала углового спектра D(αmm) определяют азимут α0 и угол места β0 каждого луча принятого многолучевого сигнала.

10. Полученные двумерные пеленги (α00) выделенных лучей отображаются на картографическом фоне.

Способ-прототип обеспечивает повышенную разрешающую способность оценки угловых координат. Однако данному способу свойственен следующий основной недостаток - высокая вычислительная сложность операций синтеза сигнала углового спектра что существенно ограничивает его применение на практике.

Техническим результатом изобретения является повышение вычислительной эффективности пеленгования близко расположенных источников излучения сигналов различной волновой природы.

Повышение вычислительной эффективности пеленгования близко расположенных источников излучения сигналов достигается за счет формирования сигналов N-направленной комплексной фазирующей функции вместо сигналов однонаправленной комплексной фазирующей функции и вычисления циклической свертки на основе алгоритма быстрого преобразования Фурье (БПФ).

Технический результат достигается тем, что в способе пеленгования с повышенной разрешающей способностью, заключающемся в том, что принимают многолучевой сигнал источника акустического или электромагнитного излучения антенной решеткой из N элементов, расположенных равномерно по окружности, формируют ансамбль сигналов, зависящих от времени и номера антенного элемента, синхронно преобразуют ансамбль принятых сигналов в цифровые сигналы, преобразуют цифровые сигналы в сигнал комплексной пространственной корреляционной матрицы, описывающий амплитуды и фазы взаимных сигналов, принятых элементами решетки, преобразуют сигнал пространственной корреляционной матрицы в сигналы собственных значений и собственных векторов, сравнивают сигналы собственных значений с порогом и при непревышении порога сигнал соответствующего собственного вектора идентифицируют как сигнал собственного вектора, принадлежащий шумовому подпространству, согласно изобретению преобразуют сигналы собственных векторов шумового подпространства в сигналы дискретных спектров собственных векторов, которые запоминают, формируют сигналы N-направленной комплексной фазирующей функции, зависящие от заданной частоты приема и описывающие возможные направления прихода сигнала от каждого потенциального источника, преобразуют сигналы N-направленной фазирующей функции в сигналы дискретных спектров фазирующей функции, которые запоминают, используя сигналы дискретных спектров собственных векторов и сигналы дискретных спектров фазирующей функции, формируют сигнал углового спектра, по максимумам сигнала углового спектра определяют азимут α0 и угол места β0 каждого луча принятого многолучевого сигнала, полученные двумерные пеленги (α0,β0) выделенных лучей отображают на картографическом фоне.

Возможны частные случаи осуществления способа:

1. Формирование сигналов N-направленной комплексной фазирующей функции осуществляют по формуле a ˙ l ( q , n ) = d ( q δ + n Δ , β l ) exp ( 2 π i ( r f / c ) cos ( β l ) cos ( q δ + n Δ ) ) , где q = 0, Q 1 ¯ - номер сдвига фазирующей функции по азимуту α; Q=M/N; М - число узлов сетки по азимуту α; δ=Δ/Q - шаг по азимуту α; Δ=2π/N; βl - заданные узлы сетки по углу места β; l = 1 ,L ¯ - номер узла по углу β; L - число узлов; d(qδ+nΔ,βl) - комплексная диаграмма направленности n-го элемента; r - радиус антенной решетки; f - заданная частота приема.

Это обеспечивает возможность одновременного вычисления сигнала углового спектра для N угловых направлений.

2. Формирование сигнала углового спектра осуществляют по формуле D ( α m , β l ) = ( j = 0 J 1 | F 1 { υ ˙ ˜ m a ˙ ˜ l ( q , n } | 2 ) 1 , где F-1{…} - оператор обратного ДПФ, αm=mδ, m = 0 ,M 1 ¯ - номер узла сетки по азимуту α, m=q+nQ, n=0…,N-1, j = 0, J 1 ¯ - текущий номер сигналов собственных векторов, J - число сигналов собственных векторов, υ ˙ ˜ j n - сигналы дискретных спектров собственных векторов, a ˙ ˜ l ( q , n ) - сигналы дискретных спектров фазирующей функции.

Это обеспечивает повышение вычислительной эффективности пеленгования.

В предложенном способе операции формирования сигнала углового спектра могут выполняться как последовательно, так и параллельно во времени. При последовательной схеме для каждого угла места перемножают сигналы υ ˙ ˜ j n и a ˙ ˜ l ( q , n ) , выполняют Q×J операций ДПФ с использованием алгоритма БПФ, в результате получают M×J комплексных отсчетов, квадраты модулей которых суммируют по j и получают М отсчетов сигнала углового спектра. Существенное повышение вычислительной эффективности обеспечивает распараллеливание вычислений, при котором Q×J операций БПФ выполняют одновременно.

Физический смысл предлагаемого способа заключается в следующем. Производится Q-кратное повторение операций обратного ДПФ, длина которого равна числу антенн N, находятся произведения сигналов дискретных спектров собственных векторов шумового подпространства на сигналы дискретных спектров N-направленной фазирующей функции, зависящие от циклического сдвига qδ. Это эквивалентно дискретному вращению N-направленной фазирующей функции на угол qδ, при котором каждый раз находится N значений углового спектра. Этим достигается повышение вычислительной эффективности пеленгования близко расположенных источников излучения сигналов различной волновой природы по сравнению с прототипом, в котором каждый раз находится одно значение углового спектра.

Операции способа поясняются структурной схемой устройства пеленгования с повышенной разрешающей способностью.

Предложенный способ может быть осуществлен как последовательными, так и более эффективными с вычислительной точки зрения параллельными устройствами обработки сигналов.

Рассмотрим работу устройства параллельной обработки, реализующего способ пеленгования с повышенной разрешающей способностью.

Устройство, в котором реализуется предложенный способ, содержит последовательно соединенные антенную решетку 1, многоканальный преобразователь частоты 2, многоканальный аналого-цифровой преобразователь (АЦП) 3, формирователь корреляционной матрицы, векторов шумового подпространства и их спектров 4, вычислитель углового спектра 5, устройство управления и отображения 6, формирователь спектров N-направленной комплексной фазирующей функции 7.

В свою очередь, вычислитель 5 содержит матрицу устройств 8 (j,l), элементы которых зависят от индексов j = 0 ,J 1 ¯ и l = 1 ,L ¯ , где J - число сигналов собственных векторов, L - число узлов сетки по углу места β, матрицу сумматоров 9 (q,l), элементы которых зависят от индексов q = 0, Q 1 ¯ и l = 1 ,L ¯ , где Q - число сдвигов фазирующей функции по азимуту α, а также устройство оценки угловых координат 10. Каждое устройство 8 (j,l) включает параллельно подсоединенные к выходу формирователя 4 Q блоков обратного БПФ 11, вторые входы которых соединены с выходом формирователя 7, а выходы подключены ко входам соответствующих сумматоров 9. Выходы сумматоров 9 соединены со входом устройства 10. Управляющий выход устройства 6 подключен ко входам преобразователя частоты 2 и формирователя 7. Второй информационный выход устройства 6 используется для соединения с внешними системами.

Антенная решетка 1 содержит N антенн, расположенных равномерно по окружности, с номерами n=0,…,N-1.

Преобразователь частоты 2 выполнен с общим гетеродином и с полосой пропускания каждого канала, соответствующей ширине спектра радиосигнала. Общий гетеродин обеспечивает многоканальный когерентный прием сигналов. Если разрядность и быстродействие АЦП 3 достаточны для непосредственного аналого-цифрового преобразования входных сигналов, как, например, в акустике или в KB-диапазоне радиоволн, то вместо преобразователя 2 могут использоваться частотно избирательный полосовой фильтр и усилитель. Кроме этого, преобразователь 2 обеспечивает подключение одной из антенн вместо всех антенн решетки для периодической калибровки каналов по внешнему источнику сигнала с целью устранения их амплитудно-фазовой неидентичности. Возможна калибровка по внутреннему источнику сигнала. При этом может быть использован генератор шума, выход которого также может подключаться вместо всех антенн для периодической калибровки каналов.

Формирователь 4 реализован по многопроцессорной схеме, что обеспечивает максимальное быстродействие формирования

пространственной корреляционной матрицы, преобразования ее в сигналы собственных значений и собственных векторов, идентификации сигналов собственных векторов, принадлежащих шумовому подпространству, и преобразования их в сигналы дискретных спектров.

Формирователь 7 также реализован по многопроцессорной схеме, что обеспечивает максимальное быстродействие формирования сигналов N-направленной комплексной фазирующей функции и их преобразование в сигналы дискретных спектров.

Устройство работает следующим образом.

По сигналу устройства 6 значение заданной частоты приема поступает в преобразователь 2 и формирователь 7. Преобразователь 2 перестраивается на заданную частоту приема. При этом принятый каждой антенной с номером n решетки 1 зависящий от времени t многолучевой сигнал xn(t) в преобразователе 2 переносится на более низкую частоту.

Сформированный в преобразователе 2 ансамбль сигналов xn(t) синхронно преобразуется с помощью АЦП 3 в ансамбль цифровых сигналов xn(z), где z - номер временного отсчета сигнала, который поступает в формирователь 4.

В формирователе 4 из цифровых сигналов xn(z) формируется сигнал комплексной пространственной корреляционной матрицы , описывающий амплитуды и фазы взаимных сигналов, принятых элементами решетки.

Формирование сигнала корреляционной матрицы возможно применением ряда известных алгоритмов цифровой обработки сигналов во временной и частотной областях [3].

При формировании сигнала матрицы в частотной области выполняют следующие действия:

- формируют сигналы комплексных спектральных плотностей цифровых сигналов xn(z), где Ft{…} - оператор дискретного Фурье-преобразования по времени, s - номер частотной дискреты, 1≤s≤S;

- перемножением и усреднением сформированных спектральных плотностей y ˙ n ( s ) и комплексно сопряженной спектральной плотности сигнала, измеренного на антенне решетки с номером n', восстанавливают N×N пространственную корреляционную матрицу принятого сигнала в виде R ˙ = [ r ˙ n n ' = s = 1 S y ˙ n ( s ) y ˙ n * ( s ) , n = 0, N , ¯ n = 0, N 1, ¯ ] T , где ()* - означает комплексное сопряжение.

Кроме того, в формирователе 4 выполняются следующие действия:

- сформированный сигнал пространственной корреляционной матрицы преобразуется в сигналы собственных значений λk и собственных векторов , где k = 0, N 1 ¯ - текущий номер.

Преобразование выполняется известными способами [4, стр.170];

- сравниваются сигналы собственных значений λk с порогом и при непревышении порога сигнал соответствующего собственного вектора идентифицируется как сигнал собственного вектора, принадлежащий шумовому подпространству , где υ ˙ j n и - элементы вектора υ ˙ j , j = 0 ,J 1 ¯ - текущий номер сигналов собственных векторов, принадлежащих шумовому подпространству, a J - их число, J<N. Порог выбирают исходя из ожидаемого уровня мощности шумов;

- сигналы собственных векторов шумового подпространства υ ˙ j преобразуются в сигналы дискретных спектров собственных векторов шумового подпространства , где υ ˙ ˜ j n - элементы вектора υ ˙ ˜ j . Сигналы дискретных спектров собственных векторов шумового подпространства υ ˙ ˜ j получаются путем ДПФ последовательности υ ˙ j n по индексу n.

Полученные сигналы дискретных спектров собственных векторов шумового подпространства поступают на первые входы блоков 11, соответствующих номеру j устройств 8 вычислителя 5, где запоминаются.

Одновременно с перестройкой преобразователя 2 на заданную частоту, приемом и преобразованием сигналов в АЦП 3 и в формирователе 4 в формирователе 7 выполняются следующие действия:

- формируются сигналы N-направленной комплексной фазирующей функции, зависящие от заданной частоты приема и описывающие возможные направления прихода сигнала от каждого потенциального источника , где q = 0, Q 1 ¯ - номер сдвига фазирующей функции по азимуту α; Q=М/N; М - число узлов сетки по азимуту α; δ=Δ/Q - шаг по азимуту α; Δ=2π/N; βl - заданные узлы сетки по углу места β; l = 1, L ¯ - номер узла по углу β; L - число узлов; d(qδ+nΔ,βl) - комплексная диаграмма направленности n-го элемента; r - радиус антенной решетки; f - заданная частота приема;

- сигналы N-направленной фазирующей функции преобразуются в сигналы дискретных спектров N-направленной фазирующей функции .

Формирование сигналов дискретных спектров осуществляется путем дискретного преобразования Фурье (ДПФ) q-й последовательности сигнала по индексу n. Для повышения вычислительной эффективности формирования сигналов дискретных спектров используется алгоритм БПФ.

Сформированные сигналы дискретных спектров N-направленной фазирующей функции поступают на вторые входы блоков 11, соответствующих номерам j,l устройств 8 вычислителя 5, где запоминаются.

В вычислителе 5 по сигналам υ ˙ ˜ j n дискретных спектров собственных векторов шумового подпространства и сигналам дискретных спектров N-направленной фазирующей функции формируется сигнал углового спектра по формуле , где F-1{…} - оператор обратного ДПФ, m = 0 ,M 1 ¯ - текущий номер узла сетки по азимуту α, m=q+nQ.

При этом для повышения вычислительной эффективности сигнал углового спектра формируется в соответствии с развернутым видом этой формулы , которая эффективно реализуется на основе алгоритма БПФ. Для этого в устройствах 8 вычислителя 5 выполняются следующие действия:

- в блоках 11 для каждого сочетания индексов j, q, l с использованием алгоритма БПФ одновременно формируются сигналы квадратов модулей циклических сверток длины N сигналов υ ˙ j n собственных векторов и сигналов N-направленной фазирующей функции по формуле , которые поступают на вход соответствующего сумматора 9;

- в каждом сумматоре 9 для одного сочетания индексов l, q находится сигнал суммы квадратов модулей , который поступает на вход устройства 10.

В устройстве 10 выполняются следующие операции:

- находится обратная величина сигнала суммы квадратов модулей , то есть формируется сигнал углового спектра

- по максимумам сигнала углового спектра D(αm1) определяют азимут α0 и угол места β0 каждого луча принятого многолучевого сигнала.

Полученные двумерные пеленги (α0, β0) выделенных лучей поступают в устройство 6, где отображаются на картографическом фоне, а также поступают на внешние системы, чем обеспечивается повышение информативности пеленгования.

Описанное устройство, реализующее предложенный способ, по сравнению с прототипом обеспечивает существенное повышение вычислительной эффективности η(N). Величина η(N) характеризует уменьшение числа вычислительных операций при использовании предложенного способа по сравнению с прототипом. В таблице приведены значения вычислительной эффективности η(N) в зависимости от числа антенн N в решетке и числа М узлов сетки формирования углового спектра по азимуту.

N 9 12 16 24
м 1044 1044 1040 1056
η(N) 142.0 162.0 135.0 135.0

Из таблицы следует, что описанное устройство параллельной обработки, реализующее предложенный способ, по сравнению с прототипом обеспечивает более чем 100-кратное повышение вычислительной эффективности пеленгования при использовании широкого класса антенных решеток.

Отметим, что по мере повышения требований к пространственному разрешению число М узлов сетки формирования углового спектра должно увеличиваться и, как следствие, относительная вычислительная эффективность описанного устройства, реализующего предложенный способ, также будет возрастать.

Таким образом, за счет применения в предложенном способе пеленгования с повышенной разрешающей способностью N-направленной фазирующей функции, обеспечивающей одновременное формирование N значений углового спектра, в отличие от прототипа, в котором каждый раз находится одно значение углового спектра, и вычисления циклической свертки на основе алгоритма быстрого преобразования Фурье удается решить поставленную задачу с достижением указанного технического результата.

Источники информации

1. Ратынский М.В. Адаптация и сверхразрешение в антенных решетках. - М.: Радио и связь, 2004.

2. US, патент, 6567034 В1, кл. G01S 7/36; G01S 13/00; G01S 5/02, 2003 г.

3. Шевченко В.Н. Оценивание углового положения источников когерентных сигналов на основе методов регуляризации // Радиотехника. - 2003. - №9. - С.3-10.

4. Беклемишев Д.В. Дополнительные главы линейной алгебры. М.: Наука, 1983.

1. Способ пеленгования с повышенной разрешающей способностью, заключающийся в том, что принимают многолучевой сигнал источника либо акустического, либо электромагнитного излучения антенной решеткой из N элементов, расположенных равномерно по окружности, формируют ансамбль сигналов, зависящих от времени и номера антенного элемента, синхронно преобразуют ансамбль принятых сигналов в цифровые сигналы, преобразуют цифровые сигналы в сигнал комплексной пространственной корреляционной матрицы, описывающий амплитуды и фазы взаимных сигналов, принятых элементами решетки, преобразуют сигнал пространственной корреляционной матрицы в сигналы собственных значений и собственных векторов, сравнивают сигналы собственных значений с порогом и при не превышении порога сигнал соответствующего собственного вектора идентифицируют как сигнал собственного вектора, принадлежащий шумовому подпространству, отличающийся тем, что преобразуют сигналы собственных векторов шумового подпространства в сигналы дискретных спектров собственных векторов, которые запоминают, формируют сигналы N-направленной комплексной фазирующей функции, зависящие от заданной частоты приема и описывающие возможные направления прихода сигнала от каждого потенциального источника, преобразуют сигналы N-направленной фазирующей функции в сигналы дискретных спектров фазирующей функции, которые запоминают, используя сигналы дискретных спектров собственных векторов и сигналы дискретных спектров фазирующей функции, формируют сигнал углового спектра, по максимумам сигнала углового спектра определяют азимут α0 и угол места β0 каждого луча принятого многолучевого сигнала, полученные двумерные пеленги (α0, β0) выделенных лучей отображают на картографическом фоне.

2. Способ по п.1, отличающийся тем, что формирование сигналов N-направленной комплексной фазирующей функции осуществляют по a ˙ ( q , n ) = d ( q δ + n Δ , β ) exp ( 2 π i ( r f / c ) cos ( β ) cos ( q δ + n Δ ) ) , где q = 0, Q 1 ¯ - номер сдвига фазирующей функции по азимуту α, n=0,1N-1 - номер антенного элемента, Q=M/N, М - число узлов сетки по азимуту α, δ=A/Q - шаг по азимуту α, Δ=2π/N, βl - заданные узлы сетки по углу места β, = 1 ,L ¯ - номер узла по углу β, L - число узлов, d(qδ+nΔ,βl) - комплексная диаграмма направленности n-го элемента, r - радиус антенной решетки, f - заданная частота приема, с - скорость распространения сигнала.

3. Способ по п.1, отличающийся тем, что формирование сигнала углового спектра осуществляют по формуле D ( α m , β ) = ( j = 0 J 1 | F 1 { υ ˙ ˜ j n α ˙ ˜ ( q , n } | 2 ) 1 , где F-1{…} - оператор обратного дискретного преобразования Фурье, αm=mδ, m = 0 ,M 1 ¯ - номер узла сетки по азимуту α, М - число узлов сетки по азимуту α, q = 0, Q 1 ¯ - номер сдвига фазирующей функции по азимуту α, Q=M/N, m=q+nQ, βl - заданные узлы сетки по углу места β, = 1 ,L ¯ - номер узла по углу β, L - число узлов, n=0,…,N-1 - номер антенного элемента, j = 0, J 1 ¯ - текущий номер сигналов собственных векторов, J - число сигналов собственных векторов, υ ˙ ˜ j n - сигналы дискретных спектров собственных векторов, a ˙ ˜ ( q , n ) - сигналы дискретных спектров фазирующей функции.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к пеленгаторам. .

Изобретение относится к области радиотехники , а именно к пассивным системам радиоконтроля и, в частности, может быть использовано в системах местоопределения в целях радиоконтроля, навигации, активной и пассивной локации.

Изобретение относится к радиотехнике и может быть использовано в контрольно-измерительных системах для анализа загрузки поддиапазонов частот, определения местоположения источников радиоизлучения (ИРИ), измерения частотных и временных параметров радиосигналов, а также напряженности электрического поля линейно-поляризованной волны.

Изобретение относится к радиотехническим средствам определения местоположения работающих радиолокационных станций (РЛС), имеющих сканирующую направленную антенну.

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля для определения местоположения наземных источников радиоизлучения в диапазоне частот от примерно 100 МГц до 3 ГГц.

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля и радиотехнической разведки для определения направления на источник радиоизлучения.

Изобретение относится к измерительной технике и может быть использовано в радиотехнике для определения азимутального и угломестного направлений на источники многолучевых радиосигналов в условиях априорной неопределенности относительно числа лучей, поляризационных и пространственных параметров радиосигналов, шумов и помех.

Изобретение может быть использовано в системах радиоконтроля. Способ включает предварительное определение рабочей зоны, в ней области объекта, прием радиосигналов в пунктах приема с помощью пеленгаторных антенн и многоканального приемного устройства. Для каждого пункта приема оценивают распределение уровня помех в рабочей зоне, для чего измеряют энергию принятых радиосигналов, преобразуют их в пространственный спектр, который вычитают из измеренной энергии. Затем определяют среднее геометрическое распределений уровня помех, его минимумы в области объекта и вне объекта, значения минимумов сравнивают, по результатам чего идентифицируют радиосигналы и определяют местоположение источника как положение минимума в области объекта. Преобразование в пространственный спектр выполняют путем компенсации расчетных, с учетом расстояний от пеленгаторных антенн до источников, набегов фаз, последующего суммирования преобразованных радиосигналов, квадратичного детектирования суммарного радиосигнала и деления на число пеленгаторных антенн. Рабочую зону определяют в виде круга с центром в геометрическом центре объекта и квантуют исходя из заданной точности определения местоположения источника контролируемого объекта по закону спирали Архимеда. Достигаемый технический результат - повышение достоверности идентификации, увеличение точности определения местоположения излучателя. 7 ил.

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - повышение скорости пеленгации при приеме радиосигналов нескольких источников радиоизлучения, работающих на одной частоте, с использованием круговых антенных систем (АС), состоящих из слабонаправленных элементов (вибраторов). Повышение скорости пеленгации достигается за счет использования эффективного алгоритма идентификации параметров радиосигналов, а именно получение пеленгов осуществляют в круговой АС посредством предварительного введения в вычислитель системы уравнений, сформированной для конкретной предварительно образмеренной круговой АС и при заданных значениях азимутальных пеленгов θk в заданных диапазонах: ; m∈[1,m] ξi=ехр(j(2πR/λ)cosθicosβi) uiexp(jαi) - комплексная амплитуда сигнала i-го ИРИ; R - радиус AC; λ - длина волны сигнала, излучаемого ИРИ; αi - начальная фаза i-го сигнала; γm - угол между линией, проведенной через центр АС и ее m-й элемент АС, и линией отсчета азимутальных пеленгов; М - количество элементов (вибраторов) круговой АС; К - количество ИРИ; N - количество заданных дискрет азимутального пеленга; на выходе решения указанной системы уравнений получают значения параметров амплитуд uiexp(jαi) и значений ξi, которые вместе с заданными значениями θi поступают на вход блока вычисления угломестных пеленгов βi через функцию арккосинус из условия: ξi=ехр(j(2πR/λ)cosθicosβi). 1 ил.

Способ предназначен для мониторинга радиоэлектронной обстановки при многолучевом распространении радиоволн, воздействии преднамеренных и непреднамеренных помех, отражениях сигнала от различных объектов и слоев атмосферы. Достигаемый технический результат - повышение надежности, точности и скорости пеленгации при приеме электромагнитных сигналов от нескольких источников радиоизлучения, в условиях априорной неопределенности относительно формы сигнала, шумов и помех. Указанный результат достигается тем, что получение многосигнального углового спектра мощности P, представляющего собой распределение квадратов амплитуд по пеленгам α и β, обеспечивается минимизацией функции максимального правдоподобия, путем обеспечения сходимости по времени накопления цифровых отсчетов, с учетом использования рекурсивного представления для оценки сигнальной и корреляционной матриц сигналов, по полученному многосигнальному угловому спектру мощности строится пеленгационная панорама, по которой определяется количество, интенсивность и пеленги источников радиоизлучения, кроме того, дополнительно определяется критерий наличия сигнала на заданном направлении сканирования. 1 з.п.ф-лы, 4 ил.

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - получение углового спектра нескольких ИРИ, уменьшение времени расчета пеленгов и повышение точности пеленгации. Сущность заявленного способа заключается в том, что осуществляют прием многолучевого сигнала посредством многоэлементной антенной системы (АС), синхронное преобразование ансамбля принятых сигналов, зависящих от времени и номера элемента АС, в цифровые сигналы, преобразование цифровых сигналов в сигнал амплитудно-фазового распределения (АФР) y, описывающий распределение амплитуд u и фаз φ сигналов на элементах АС, определение двумерного сигнала А комплексной фазирующей функции размером М×N, зависящего от заданной частоты приема и описывающего возможные направления прихода сигнала от каждого потенциального источника, где М - число элементов АС, N - число угловых направлений, соответствующих заданным потенциально возможным направлениям сигнала по азимуту θк и углу места βк, где к=1, 2,…, N. При этом получение многосигнального углового спектра и вектора амплитуд сигналов u, представляющего собой распределение амплитуд по пеленгам θк и βк, осуществляют путем формирования точечных оценок амплитуд u и пеленгов сигналов за счет использования функционала с заданным шагом обновления направления спуска по методу сопряженных градиентов, включающего в себя сумму разностей сигнала А, умноженного на амплитуду искомого сигнала АФР y, и произведения уi на логарифм сигнала А, умноженного на амплитуду искомого сигнала АФР y, деленных на ε i 2 y i , где εi - относительная погрешность значения yi, точка минимума которого определяет точечные оценки параметров Θ, что позволяет определить для каждого пеленга в заданном диапазоне углов амплитуду u. По полученному многосигнальному угловому спектру строят пеленгационную панораму, по которой определяют количество, интенсивность и пеленги источников радиоизлучения. 1 з.п.ф-лы,1 ил.

Изобретение относится к радиопеленгации. Достигаемый технический результат - повышение точности пеленгации при приеме радиосигналов одного или нескольких источников радиоизлучения, работающих на одной частоте, а также получение интервальных оценок значений пеленгов. Указанный результат достигается за счет того, что способ включает в себя прием многолучевого сигнала посредством многоэлементной антенной системы (АС), синхронное преобразование ансамбля принятых сигналов, зависящих от времени и номера элемента АС, в цифровые сигналы, преобразование цифровых сигналов в сигнал-вектор амплитудно-фазового распределения (АФР), описывающий распределение амплитуд и фаз на элементах АС, вычисление сигнала фазирующей функции и определение пеленгов сигналов при заданных с погрешностью параметрах АС. При этом получение истинных значений пеленгов осуществляют посредством идентификации наиболее вероятных оценок параметров АС, участвующих в расчете с помощью итерационного процесса конфлюэнтного анализа сигналов, который позволяет учесть неопределенности всех величин, участвующих в расчете, для уточнения значений элементов АС и сигнала АФР, входящих в определение пеленгов. После окончания итерационного процесса определяют интервальную оценку найденных пеленгов на основе вычисленной корреляционной матрицы ошибок найденных значений пеленгов. 1 ил.

Изобретение относится к области ближней локации и может быть использовано в информационно-измерительных средствах и системах, работающих в режимах активного распознавания слабоконтрастных целей с блестящими точками на фоне широкополосных и распределенных в пространстве помех, а также в условиях работы ретрансляторов, имитирующих сигнал, отраженный от цели. Достигаемый технический результат - повышение помехоустойчивости. Указанный результат достигается наличием в предложенном устройстве - радиолокационном обнаружителе - генератора шума, сигнал которого складывается с пилообразным модулирующим сигналом, и устройства обработки по относительной ширине полосы энергетического спектра доплеровского сигнала в качестве анализатора, которое обеспечивает распознавание цели с блестящими точками от распределенной в пространстве помехи, а также обеспечивает резкую отсечку функции чувствительности за пределами рабочей дальности и инвариантность работы автономной информационной системы по отношению к амплитуде принимаемого сигнала в пределах рабочей дальности. 1 з.п. ф-лы, 5 ил.

Изобретения относятся к радиотехнике и могут быть использованы для определения местоположения источника радиоизлучения (ИРИ) с летно-подъемного средства (ЛПС) угломерно-дальномерным способом. Достигаемый технический результат - повышение точности местоопределения ИРИ при незначительном возрастании временных затрат. Технический результат достигается благодаря дополнительному измерению угла места на ИРИ и полному учету пространственной ориентации ЛПС. Данный подход позволил перейти от «расчета всех возможных значений корреляции и применения их при формировании элементов матрицы измерений», каждый из которых соответствует определенной элементарной зоне привязки, на подход «расчет значений корреляций для каждой элементарной зоны привязки». Устройство определения координат ИРИ, реализующее способ, содержит блок определения пространственных параметров, первый, второй, третий, четвертый и пятый вычислители-формирователи, первый и второй блоки памяти, радионавигатор, устройство угловой ориентации, блок измерения первичных пространственно-информационных параметров, генератор синхроимпульсов, блок оценивания, блок определения координат и блок индикации, определенным образом соединенные между собой. 2 н. и 2 з.п. ф-лы, 11 ил.

Изобретение относится к радиотехнике, в частности к односигнальной радиопеленгации источника радиоизлучения (ИРИ). Достигаемый технический результат - повышение скорости и точности определения азимутальных и угломестных составляющих пеленгов и начальной фазы сигнала ИРИ. Указанный результат достигается тем, что способ включает в себя разделение произвольной нелинейной антенной системы (АС) на логические части по элементам (вибраторам) АС. Разделение производят на n-частей, но не менее чем на три части (три элемента АС). Измеренные комплексные амплитуды сигналов, полученные с выхода каждого элемента, поступают в блок вычисления натуральных логарифмов, затем в вычислитель, куда заранее введены аналитические выражения натурального логарифма от функции, описывающей комплексную огибающую выходных сигналов элементов АС, действительные и мнимые части которой приравнивают действительным и мнимым частям натурального логарифма измеренных комплексных амплитуд сигналов, полученных с выхода каждого элемента АС. Получают систему алгебраических уравнений, из которой определяют аналитические выражения для вычисления азимутального пеленга θ, угломестного пеленга β, начальной фазы сигнала φ0 согласно определенным матричным тригонометрическим формулам. После нахождения значений пеленга θ и начальной фазы φ0 определяют пеленг β. Для нахождения доверительных интервалов определяемых параметров дополнительно вычисляют дисперсии D найденных значений параметров.

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - отсутствие ограничений на применение способа по рабочему сектору углового положения источников радиоизлучений (ИРИ) и совокупности полученных реальных измерений; упрощение процесса получения интервальных оценок углового положения ИРИ; повышение адекватности интервальных оценок углового положения ИРИ при сохранении повышенного быстродействия (скорости) обработки сигналов при пеленгации радиосигналов нескольких ИРИ, работающих на одной частоте, с использованием антенных систем (АС), состоящих из слабонаправленных элементов (вибраторов). Указанный технический результат достигается за счет формирования определенной топологии слабонаправленных элементов АС; организации процессов обработки сигналов с элементов АС для получения оценок углового положения ИРИ на основе интервального анализа и использования отображения областей в комплексных пространствах значений экспоненциальных функций, накрывающих соответствующие им полученные оценки, формируемых в пространство дискретных значений угловых координат по азимуту и углу места. 13 табл.

Изобретение относится к радиотехнике и может быть использовано для определения местоположения и скорости априорно неизвестного источника радиоизлучения (ИРИ). Достигаемый технический результат - определение за один этап обработки одновременно координат и скорости ИРИ. Способ основан на вычислении количества N элементарных зон привязки возможного расположения ИРИ, определении координат местоположения центров элементарных зон привязки, присвоении каждой элементарной зоне привязки порядкового номера n=1, 2, …, N, задании полосы частот ΔF, в которой ведется прием сигналов, разбиении заданной полосы частот ΔF на P поддиапазонов шириной Δf, присвоении каждому поддиапазону порядкового номера p=1, 2, … P, определении для R взаимосвязанных периферийных и центрального пеленгаторных пунктов (ПП) с известным их местоположением, каждый из которых включает M антенных элементов, значений эталонных первичных пространственно-информационных параметров (ППИП), на выходах всех антенных элементов, которые рассчитывают для средних частот всех частотных поддиапазонов, приеме сигналов ИРИ в заданной полосе частот ΔF всеми ПП, измерении ППИП для каждого антенного элемента всех ПП и передаче их с периферийных ПП на центральный ПП, при этом перед определением эталонных ППИП задают диапазоны возможных значений составляющих скорости ИРИ, разбивают заданные диапазоны на G каналов каждый, присваивают каждому каналу порядковый номер c=1, 2 … G, d=1, 2 … G, задают интервал обработки, определяемый шириной полосы частотного поддиапазона, и время накопления сигнала, для каждого канала составляющих скорости, каждой элементарной зоны привязки, каждого антенного элемента всех ПП определяют значения эталонных ППИП, измеряют ППИП принятых сигналов исходя из ожидаемого положения ИРИ в каждом частотном поддиапазоне, на каждом антенном элементе всех ПП, далее для каждой элементарной зоны привязки, каждого антенного элемента всех ПП, каждого частотного поддиапазона и для каждого канала составляющих скорости определяют произведение измеренных и эталонных ППИП, полученные произведения суммируют по всем антенным элементам, находят абсолютное значение суммы и результат суммируют по частотным каналам, и по положению максимума результирующей суммы, определяемого по совокупности значений суммы в дискретных точках n, c, d, определяют координаты ИРИ и его скорость. 7 ил.

Изобретение относится к измерительной технике и может быть использовано в акустике и радиотехнике для восстановления изображений и определения с повышенной разрешающей способностью азимутального и угломестного направлений на источники волн различной природы: упругих волн в различных средах, в частности звуковых, волн на поверхности жидкости и электромагнитных волн

Наверх