Устройство для электролиза воды и способ его эксплуатации



Устройство для электролиза воды и способ его эксплуатации
Устройство для электролиза воды и способ его эксплуатации

 

C25B1/02 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2493292:

Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" (RU)

Группа изобретений относится к энергетике, и может использоваться в автономных энергоустановках. Устройство для электролиза воды содержит электролизер с пневматически изолированными полостями для водорода и кислорода, подключенный к блоку питания, который электрически связан с системой контроля параметров процесса, а также систему водоснабжения с запасом реакционной воды, включающую газоотделители водорода и кислорода, и систему охлаждения газоотделителя водорода, входная гидромагистраль которого снабжена датчиком температуры. После запуска электролизера регистрируют величину тока электролиза и в случае ее меньшего значения по сравнению с заданной величиной тока подачу реакционной воды прерывают, а после достижения заданной величины тока возобновляют подачу воды через полость для водорода электролизера с расходом, обеспечивающим постоянство температуры воды на выходе из этой полости. При падении тока возобновляют подачу реакционной воды в полость для кислорода. Изобретение повышает энергоэффективность, быстродействие и безопасность работы устройства для электролиза воды, а также позволяет снизить его зависимость от вспомогательных источников энергии и условий окружающей среды. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к энергетике и может использоваться в автономных энергоустановках (ЭУ), в том числе ЭУ, работающих с возобновляемыми источниками энергии (ВИЭ).

С 19-го века известны способ и устройство для электролиза воды, включающее питательную емкость и электролизер с каналами для подвода воды к электродам и для раздельного отвода электролизных газов водорода и кислорода (von Hofmann, A.W. Introduction to Modern Chemistry: Experimental and Theoretic; Embodying Twelve Lectures Delivered in the Royal College of Chemistry, London. Walton and Maberly, London, 1866., ru.wikipedia.org>wiki/Аппарат_Гофмана). Такой «аппарат Гофмана» не пригоден для электролиза с большой производительностью (когда выделяется много тепла), а использование общей питающей емкости со временем приводит к появлению взаимных примесей в электролизных газах.

Более близкими к предлагаемому решению является способ электролиза воды и устройство для его осуществления (RU 2034933 C1, МПК: C25B 1/02 (2006.01), 10.05.1995 г.), в котором применяется твердополимерный электролизер, а устройство работает методом «газ-лифт» (прототип). В обоих случаях используется анодная схема подачи реакционной воды (РВ) в электролизер, когда вода подается в кислородную полость электролизных ячеек (ЭЯ), а в водородную их полость РВ попадает через протонопроводящую мембрану ЭЯ. Устройство для электролиза воды содержит твердополимерный электролизер с пневматически изолированными полостями водорода и кислорода, подключенный к блоку питания, который электрически связан с системой контроля параметров, а также систему водоснабжения с запасом реакционной воды, включающую газоотделитель кислорода, соединенный с кислородной полостью электролизера своими входной и выходной гидромагистралями и снабженный выходной пневмомагистралью с запорным элементом, газоотделитель водорода с входной и выходной гидромагистралью, соединенный своей входной гидромагистралью с водородной полостью электролизера и снабженный выходной пневмомагистралью с запорным элементом. Способ эксплуатации устройства для электролиза воды включает запуск электролизера и последующую подачу реакционной воды через его водородную и кислородную полости методом «газ-лифт», частичное разложение воды электрическим током на водород и кислород, отделение полученных газов от оставшейся воды и выдачу их потребителю, контроль параметров процесса.

К недостаткам прототипа-устройства можно отнести:

- при большой мощности электролизера наступает перегрев электролизера, так как тепло из ЭЯ не отводится;

- при высоких давлениях, когда растворимость газов в воде растет, в питающей емкости образуется гремучая смесь.

Недостатками прототипа-способа являются:

- необходимость предварительного нагрева РВ и связанное с этим недостаточное быстродействие устройства, что затрудняет его использование с ВИЭ и затрудняет запуск при низких температурах;

- повышенные энергозатраты, также связанные с предпусковым нагревом РВ.

Задачей данного технического решения является:

- повышение быстродействия и сокращение энергозатрат;

- реализация возможности «холодного» запуска установки без вспомогательных источников энергии;

- возможность длительной работы в стационарном режиме;

- исключение возможности образования гремучей смеси в процессе работы установки при высоких давлениях.

Техническим результатом изобретения является повышение энергоэффективности, быстродействия и безопасности работы устройства для электролиза воды, снижение его зависимости от вспомогательных источников энергии и условий окружающей среды.

Технический результат достигается тем, что в устройство для электролиза воды, содержащее твердополимерный электролизер с пневматически изолированными полостями водорода и кислорода, подключенный к блоку питания, который электрически связан с системой контроля параметров, а также систему водоснабжения с запасом реакционной воды, включающую газоотделители водорода и кислорода, соединенные с соответствующими полостями электролизера своими входными и выходными гидромагистралями и снабженные пневмомагистралями с запорными элементами, введена система охлаждения газоотделителя водорода, выходная гидромагистраль которого снабжена регулятором расхода воды, подключенным к системе контроля параметров, а входная гидромагистраль - датчиком температуры, также подключенным к этой системе, при этом на выходной гидромагистрали газоотделителя кислорода установлен запорный элемент.

Технический результат достигается за счет того, что в способе эксплуатации устройства для электролиза воды, включающем запуск электролизера и последующую подачу реакционной воды через его водородную и кислородную полости методом «газ-лифт», частичное разложение воды на водород и кислород, отделение полученных газов от оставшейся воды и выдачу их потребителю, контроль параметров процесса, после запуска электролизера регистрируют величину тока электролиза и в случае ее меньшего значения по сравнению с заданной величиной тока подачу реакционной воды прерывают, а после установления заданной величины тока возобновляют подачу воды через водородную полость электролизера с расходом, обеспечивающим постоянство температуры воды на выходе из этой полости, при этом в случае падения тока возобновляют подачу реакционной воды в кислородную полость электролизера.

Суть предлагаемого способа состоит в том, что для ускорения выхода электролизера на заданный режим (а также для «холодного» запуска электролизной установки) используется тепло, генерируемое самим электролизером. Тепловая мощность последнего составляет обычно 20÷30% от потребляемой энергии, при этом она увеличивается с увеличением срока службы электролизера (то есть старый электролизер греется больше и выходить на режим будет быстрее). Это тепло и используется для разогрева ЭЯ.

При запуске электролизных установок обычно производится предварительный нагрев РВ до 40÷50°C, поскольку циркуляция через твердополимерную ЭЯ холодной воды препятствует процессу ее разложения там. Это связано с тем, что скорость реакций определяющим образом зависит от температуры реагентов.

В предлагаемом способе течения воды через ЭЯ нет, и появляется возможность для саморазогрева ячеек. Тепло, выделяющееся на поверхности их мембран при химических реакциях, не выносится наружу, а остается в пристеночном пограничном слое у поверхности мембраны. Это стимулирует ускорение самих этих реакций, что в свою очередь повышает мощность тепловыделения и температуру воды в ячейке. Таким образом, в отсутствии течения воды в ЭЯ происходит ее саморазогрев даже при относительно низких температурах окружающей среды. В частности, при испытаниях в РКК «Энергия» в 2010 г. твердополимерная установка без специальных средств теплоизоляции выходила на номинальный режим работы при температуре окружающей среды до 5÷10°C.

Длительность работы электролизера в режиме саморазогрева ограничивается двумя факторами:

- возможностью перегрева ЭЯ (рабочая температура мембраны обычно не превышает 100°C);

- ограниченным запасом воды, находящейся в ЭЯ (ее запас не пополняется, так как течения нет).

При этом следует подчеркнуть, что при анодной схеме водоснабжения (принятой и здесь, и в прототипе) вода из кислородной полости ЭЯ вместе с протонами переносится в водородную полость, где происходит выделение основной части тепла. В связи с этим в предлагаемой установке используется два циркуляционных контура в системе водоснабжения электролизера (фиг.1):

- водородный контур, служащий для выноса тепла из ЭЯ и работающий постоянно, с расходом, обеспечивающим стационарность теплового режима электролизера;

- кислородный контур, используемый для пополнения запасов воды в ЭЯ. Для предотвращения захолаживания ячеек холодной водой «проливки» кислородной полости необходимо проводить кратковременно, при падении тока электролиза (ток падает при заполнении ячеек газом, когда вода заканчивается).

Сущность изобретения поясняется чертежами.

На фиг.1 представлена схема предлагаемого устройства для электролиза воды, где обозначено: 1 - твердополимерный электролизер; 2 - водородная полость электролизера; 3 - кислородная полость электролизера; 4 - блок питания; 5 - система контроля параметров; 6 - газоотделитель кислорода; 7 - входная гидромагистраль газоотделителя кислорода; 8 - выходная гидромагистраль газоотделителя кислорода; 9 - пневмомагистраль газоотделителя кислорода; 10, 11, 19 - запорный элемент; 12 - газоотделитель водорода; 13 - входная гидромагистраль газоотделителя водорода; 14 - выходная гидромагистраль газоотделителя водорода; 15 - пневмомагистраль газоотделителя водорода; 16 - теплообменник газоотделителя водорода; 17 - регулятор расхода воды (РРВ); 18 - датчик температуры.

На фиг.2 представлено изменение основных параметров процесса электролиза (ток, давление, температура) при способе эксплуатации устройства, где обозначено:

20 - зависимость тока электролиза от времени;

21 - зависимость давления в газоотделителях (6), (12) от времени;

22 - зависимость температуры на выходе электролизера от времени.

В предлагаемой схеме электролизной установки водородная (2) и кислородная (3) полости твердополимерного электролизера (1), соединены с газоотделителем водорода (11) и газоотделителем кислорода (6) их входными гидромагистралями (13) и (7) соответственно. Газоотделители (6) и (12) снабжены соответствующими пневмомагистралями (9) и (15) с запорными элементами (10), (11). На гидромагистралях водородного газоотделителя (12) установлены:

- на входной магистрали (13) - датчик температуры (18);

- на выходной (14) - регулятор расхода воды (17).

Датчик температуры (18), и регулятор расхода воды (17) подключены к системе контроля параметров (5), которая электрически связана с блоком питания (4) электролизера (1).

Выходная гидромагистраль (8) газоотделителя кислорода (6) снабжена запорным элементом (19).

Газоотделитель водорода (12) снабжен системой охлаждения - например, теплообменником (16). В качестве системы охлаждения могут использоваться различные средства: рубашка охлаждения, обдув воздухом и др.

Работает данное устройство в соответствии с предлагаемым способом следующим образом. После запуска электролизера (1) (то есть заполнения его водой из газоотделителей (6) и (12) и включения блока питания (4)) система контроля параметров (5) регистрирует величину тока электролиза.

Если величина тока недостаточна из-за низкой температуры реакционной воды и электролизера, подачу воды в полости (2) и (3) электролизера прекращают, с помощью РРВ (17) и запорного элемента (19) на выходных магистралях (14) и (8) газоотделителей водорода (12) и кислорода (6). В отсутствие циркуляции воды начинается саморазогрев электролизера (1) вместе с находящейся в нем водой. Обусловленное повышением температуры увеличение тока электролиза регистрируется системой контроля (5). Образующиеся при этом водород и кислород из полостей электролизера (2) и (3) соответственно по входным гидромагистралям (13) и (7) поступают в газоотделители (12) и (6) вместе с небольшим количеством воды. В ходе электролиза тепло выделяется в основном в водородной полости (2) электролизера (1).

Температура водородо-водяной смеси на выходе водородной полости (2) регистрируется датчиком температуры (18) и системой контроля параметров (5), которая фиксирует также величину рабочего тока. Когда ток достигнет заданной величины, открывают РРВ (17) и устанавливают такой расход воды в гидромагистрали (14), который бы остановил дальнейший рост температуры воды на выходе из водородной полости (2) электролизера, в гидромагистрали (13).

Таким образом, тепло, выработанное электролизером (1) при работе в режиме саморазогрева, расходуется на нагрев реакционной воды (и самого электролизера) до необходимой температуры, соответствующей заданному значению тока. Избыточное тепло выносится в водородный газоотделитель (12) и удаляется через систему охлаждения (16), в результате чего реализуется стационарный тепловой режим устройства. В целом водородный контур устройства работает как его система терморегулирования, а кислородный контур является системой водоснабжения.

Нарушен такой режим работы, может быть в случае, когда заканчивается запас воды в кислородной полости (3) электролизера (1). В процессе работы эта вода частично разлагается током, а частично переносится через мембрану ЭЯ в водородную полость (2). При этом кислородная полость (3) заполняется газом и ток падает. В этом случае открывается запорный элемент (19), и запас воды в кислородной полости (3) пополняется из газоотделителя кислорода (6).

Выход водорода и кислорода из газоотделителей (6), (12) потребителю осуществляется по соответствующим пневмомагистралям (9) и (15), которые снабжены запорными элементами (10), (11).

Получены экспериментальные данные (фиг.2) при испытаниях твердополимерной электролизной установки с производительностью по водороду до 100 нл/ч (РКК «Энергия», 2010 г.). Напряжение питания электролизера, имеющего 12 электролизных ячеек, постоянно (22 B), номинальный ток электролиза - 15 A. Импульсные провалы на графике тока (зависимость тока электролиза от времени - кривая 20 на фиг.2) соответствуют временному заполнению кислородной полости электролизера газом (кислородная полость одной из ячеек обезвоживается и ток падает).

1. Устройство для электролиза воды, содержащее твердополимерный электролизер с пневматически изолированными полостями для водорода и кислорода, подключенный к блоку питания, который электрически связан с системой контроля параметров процесса, а также систему водоснабжения с запасом реакционной воды, включающую газоотделители водорода и кислорода, соединенные с соответствующими полостями электролизера своими входными и выходными гидромагистралями и снабженные пневмомагистралями с запорными элементами, отличающееся тем, что в него введена система охлаждения газоотделителя водорода, выходная гидромагистраль которого снабжена регулятором расхода воды, подключенным к системе контроля параметров процесса, а входная гидромагистраль - датчиком температуры, также подключенным к упомянутой системе, при этом на выходной гидромагистрали газоотделителя кислорода установлен запорный элемент.

2. Способ электролиза воды, включающий запуск твердотопливного электролизера с его выходом на заданный режим эксплуатации и последующую подачу реакционной воды через его полости для водорода и кислорода методом «газ-лифт», частичное разложение воды на водород и кислород, отделение полученных газов от оставшейся воды с выдачей их потребителю и контроль параметров процесса, отличающийся тем, что после запуска электролизера регистрируют величину тока электролиза и в случае ее меньшего значения по сравнению с заданной величиной тока подачу реакционной воды прерывают, а после достижения заданной величины тока возобновляют подачу воды через полость для водорода с расходом, обеспечивающим постоянство температуры воды на выходе из этой полости, причем в случае падения тока возобновляют подачу реакционной воды в полость для кислорода.



 

Похожие патенты:

Изобретение относится к конструкциям устройств электролиза и может быть использовано для обеззараживания природных и сточных вод в хозяйственно-питьевом водоснабжении; для дезинфекции оборудования, помещений и сооружений в отраслях пищевой промышленности, в медико-санитарных учреждениях, предприятиях общественного питания, санаториях и домах отдыха, детских учреждениях, плавательных бассейнах, для отбеливания; для предотвращения биообрастания в системах водяного обогрева и охлаждения.

Изобретение относится к конструкциям устройств электролиза и может быть использовано для обеззараживания природных и сточных вод в хозяйственно-питьевом водоснабжении; для дезинфекции оборудования, помещений и сооружений в отраслях пищевой промышленности, в медико-санитарных учреждениях, предприятиях общественного питания, санаториях и домах отдыха, детских учреждениях, плавательных бассейнах, для отбеливания; для предотвращения биообрастания в системах водяного обогрева и охлаждения.
Изобретение относится к области фторорганической химии, а именно к способу получения фторангидрида перфторциклогексанкарбоновой кислоты, который используется в синтезе мономеров, поверхностно-активных веществ и термостойких полимеров, обладающих водо- и маслоотталкивающими свойствами.
Изобретение относится к способам получения высших перфторкарбоновых кислот, в частности перфторгептановой и перфторнонановой. .
Изобретение относится к области электрохимии. .

Данное изобретение относится к устройству для электролиза пара и способу ведения электролиза пара, введенного под давлением в анодное пространство (32) электролизера (30), обеспеченного протон-проводящей мембраной (31), изготовленной из материала, позволяющего протонированным частицам внедряться в эту мембрану под паром, причем указанная протон-проводящая мембрана непроницаема для диффузии кислорода О2 и Н2, при котором происходит окисление воды, введенной в паровой форме, происходящее на аноде (32) так, чтобы генерировать протонированные частицы в мембране, которые мигрируют внутри этой самой мембраны и восстанавливаются на поверхности катода (33) в форме реакционно-способных водородных атомов, способных восстанавливать диоксид углерода СО2 и/или моноксид углерода СО. Способ включает этапы, на которых вводят СО2 и/или СО под давлением в катодное пространство (33) электролизера (30), восстанавливают СО2 и/или СО, введенные в катодное пространство (33), из указанных реакционно-способных водородных атомов, сгенерированных так, чтобы СО2 и/или СО образовывали соединения типа CxHyOz, с x≥1; у между 0 и 2х+2 и z между 0 и 2х. Технический результат изобретения заключается в сокращении количества существующего диоксида углерода, например, путем повторного использования этого диоксида углерода в форме соединений, пригодных в химической области или в области производства энергии. 2 н. и 15 з.п. ф-лы, 3 ил.

Группа изобретений относится к синтетической диафрагме для хлор-щелочных электролизеров с улучшенными параметрами энергопотребления и характеристиками разделения газов. Диафрагма состоит из сетчатой структуры полимерных волокон, связанных с гидрофильным керамическим материалом, содержащим цирконий, химически связанный с гидроксильными группами. Керамический материал из оксида циркония, (ZrO2), механически связанный с полимебрными волокнами, подвергают способу гидратации при вакуумировании, который может быть проведен непосредственно в электролизере с помощью подходящего оборудования. 4 н. и 17 з.п. ф-лы, 1 ил.
Изобретение предназначено для электрохимической технологии получения разбавленных щелочных растворов перекиси водорода и может быть использовано в сорбционных технологиях водоочистки и водоподготовки. Способ получения перекиси водорода путем катодного восстановления кислорода в щелочных растворах с инжекцией кислородсодержащего газа осуществляют в электрохимической ячейке, включающей анодное отделение, снабженное анодом, и катодное отделение, снабженное углеграфитовым катодом. В процессе получения перекиси водорода применяют католит, состоящий 1% NaOH+0,1 г/л MgSO4+10-3 М С6Н4(ОН)2, при подаче озон-кислородной смеси к катоду. Изобретение позволяет значительно увеличить выход по току перекиси водорода, снизить в два раза энергозатраты, уменьшить массогабаритные размеры катода. 1 табл., 1 пр.
Изобретение относится к способу разложения лигнина, в котором водный раствор или суспензию лигнина электролизуют на алмазном электроде в кислых условиях и получаемые в качестве продуктов разложения лигнина производные гидроксибензальдегида и/или производные фенола непрерывно удаляют из электрохимической ячейки. Технический результат заключается в том, чтобы обработка получаемых промежуточных продуктов осуществлялась с незначительными затратами и, следовательно, была дешевле по сравнению с известными способами. 5 з.п. ф-лы, 2 пр.
Изобретение относится к области электрохимии и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом. Описан способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, при этом для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Технический эффект - повышение эффективности модификации электрохимических катализаторов и их эксплуатационных характеристик. 1. з.п. ф-лы.

Изобретение относится к способу получения диарилкарбоната в сочетании с электролизом образующихся содержащих хлорид щелочного металла отработанных водных растворов. Способ получения диарилкарбоната и переработки, по крайней мере, одной части образующегося при этом содержащего хлорид щелочного металла раствора включает следующие стадии: а) взаимодействие фосгена, полученного при взаимодействии хлора с монооксидом углерода, с по крайней мере одним монофенолом в присутствии основания и, при необходимости, в присутствии основного катализатора с образованием диарилкарбоната и содержащего хлорид щелочного металла раствора, б) отделение и выделение образовавшегося на стадии а) диарилкарбоната, в) отделение остающегося после стадии б) содержащего хлорид щелочного металла раствора от остатков растворителя и, при необходимости, остатков катализатора с последующей обработкой адсорбентами, причем перед обработкой адсорбентами значение рН в содержащем хлорид щелочного металла растворе устанавливают равным 8 или менее 8, г) электрохимическое окисление, по крайней мере, одной части содержащего хлорид щелочного металла раствора со стадии в), протекающее с образованием хлора, раствора гидроксида щелочного металла и в соответствующем случае водорода, причем при этом по крайней мере одну часть полученного хлора используют для получения фосгена, и/или д) возвращение по крайней мере одной части полученного на стадии г) раствора гидроксида щелочного металла на стадию получения диарилкарбоната а), где по крайней мере часть образовавшегося на стадии в) содержащего хлорид щелочного металла раствора возвращают на стадию а). Соответствующий изобретению способ наряду с другими преимуществами обеспечивает улучшенную утилизацию с помощью электролиза образующегося при получении диарилкарбоната раствора, содержащего хлорид щелочного металла. 11 з.п. ф-лы, 4 пр.

Изобретение относится к водородной энергетике. Способ получения водорода из воды включает обработку воды одновременно электрическим и магнитным полями для разложения молекул воды на кислород и водород посредством пары колебательных контуров, состоящих из водяного конденсатора с изолированными обкладками, на которые подают высоковольтное выпрямленное напряжение импульсной формы, индуктивностей и размещенных между пластинами конденсаторов и индуктивностями полостей для обрабатываемой воды, при этом воздействие на воду полями осуществляют в резонансном режиме по отношению к гидродинамическим колебаниям воды при направлении вектора напряженности магнитного поля перпендикулярно вектору напряженности электрического поля. Устройство содержит пару колебательных контуров, каждый из которых состоит из водяного конденсатора с изолированными обкладками, на которые подается высоковольтное выпрямленное напряжение импульсной формы, индуктивностей и размещенных между пластинами конденсаторов и индуктивностями полостей для обрабатываемой воды, при этом емкость конденсатора первого колебательного контура связана с индуктивностью второго колебательного контура, емкость второго колебательного контура связана с индуктивностью первого колебательного контура с возможностью одновременной их зарядки и разрядки, а входные напряжения сдвинуты по фазе на 90 градусов. Обеспечивается повышение производительности, уменьшение энергозатрат на единицу производимого продукта и удешевление производства водорода. 2 н.п. ф-лы, 3 ил.

Изобретение относится к электролизеру (100), включающему корпус (115) высокого давления, имеющий обечайку и противоположные закрытые концы; пакет (101) электролизных ячеек внутри корпуса высокого давления, содержащий группу биполярных электролизных ячеек, собранных в пакет между первой концевой контактной пластиной (107a) и второй концевой контактной пластиной (108a), и приспособленный для работы под внутренним давлением; соединения для текучих сред для подвода электролита к пакету ячеек и для отвода продукта(ов) электролиза от пакета ячеек, и электрические соединения, включающие по меньшей мере анодное и катодное соединения. Электролизер характеризуется тем, что первая концевая контактная пластина (107a) пакета ячеек составляет единое целое с одним из закрытых концов корпуса высокого давления, формируя стационарную головку (107) пакета ячеек, снабженную соединениями (122) для текучих сред и электрическими соединениями (120, 121) анода и катода с пакетом ячеек, а вторая концевая контактная пластина (108a) пакета ячеек находится внутри корпуса (115) высокого давления и имеет возможность свободного перемещения в продольном направлении относительно первой концевой контактной пластины и корпуса, при термическом расширении или сжатии, формируя тем самым плавающую головку (108) пакета ячеек. Также изобретение относится к способу проведения электролиза, оборудованию для электролиза и к получению водорода высокого давления, использующим указанный электролизер. Настоящее изобретение предоставляет электролизер, позволяющий получать водород при давлении, необходимом для его хранения в резервуарах, при этом не содержит соединителей для текущих сред, критичных для герметичности системы, и исключает риск паразитных токов и опасных замыканий, возникающих в случае утечки электролита. 4 н. и 10 з.п. ф-лы, 4 ил.
Изобретение относится к области электрохимии и может быть использовано в качестве подготовительного этапа производства электрокатализаторов. Описан способ предварительной обработки углеродного носителя электрохимического катализатора, заключающийся в том, что обработку углеродного носителя электрохимического катализатора производят в вакуумной камере, снабженной источником потока атомных частиц и держателем углеродного порошка, выполненным с возможностью перемешивания порошка, порошок углеродного носителя перемешивают, а поверхность носителя бомбардируют пучком атомных частиц, при этом для размещения порошка углеродного носителя используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, помещают на подложку слои частиц углеродного носителя, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя, а бомбардировку поверхности частиц углеродного носителя производят с энергией ионов не менее 7,41 эВ/атом. Технический эффект - повышение эффективности активации поверхности мелкодисперсных и наноразмерных носителей электрохимических катализаторов.

Изобретение относится к области химии. Для получения водорода проводят реакцию паровой каталитической конверсии углеродсодержащей жидкости с получением продуктов реакции, содержащих водород. Продукты реакции направляют на вход катодного пространства для электролиза в высокотемпературном электролизере, на выходе из катодного пространства выделяют реакционный поток, содержащий синтез-газ, который направляют на каталитический синтез углеродсодержащей жидкости. В анодном пространстве, отделенном от катодного пространства электролитическим слоем, выделяют кислород. Углеродсодержащую жидкость возвращают в начало процесса на конверсию, а полученный в процессе синтеза углеродсодержащей жидкости водород очищают от оксидов углерода. 10 з.п. ф-лы, 1 ил.
Наверх