Способ получения износостойкого покрытия

Изобретение относится к способам нанесения износостойких покрытий на рабочие элементы технологического оборудования и может быть использовано в металлообработке, в медицинском инструментарии, в инструментальном и ремонтном производствах для получения покрытий инструмента. Покрытие наносят вакуумным ионно-плазменным методом с использованием по меньшей мере двух дуговых испарителей, один из которых содержит гафниевый или циркониевый катод, остальные титановые. Нанесение покрытия осуществляют в камере в среде азотокислородной смеси с содержанием кислорода 1÷3 мас.% при давлении 0,07÷0,45 Па. Техническим результатом изобретения является увеличение твердости и износостойкости покрытия и, как следствие, повышение работоспособности инструмента. 1 табл., 4 пр.

 

Изобретение относится к способам нанесения износостойких покрытий на рабочие элементы технологического оборудования и может быть использовано в металлообработке, в медицинском инструментарии, в инструментальном и ремонтных производствах для получения покрытий инструмента.

Известны способы получения износостойкого многослойного покрытия вакуумно-плазменным методом: патент RU №2361013, C23C 14/06, 2009, патент RU №2362834, C23C 14/06, 2009, патент RU №2415198, C23C 14/06, 2011, патент RU №2346078, C23C 14/06, 2009. Недостатком перечисленных способов является сложность процесса нанесения покрытий. Кроме того, даже использование во всех слоях в различных соотношениях одних и тех же материалов не исключает вероятности возникновения и распространения трещин в покрытии из-за наличия границ между слоями.

Известен способ ионно-плазменного нанесения на деталь наноструктурированного металлического покрытия (патент RU №2388684, B82B 3/00, 2010). Способ включает установку детали в вакуумной камере, создание вакуума 0,01 Па, катодную очистку поверхности обрабатываемой детали и нанесение металлического покрытия на обрабатываемую деталь путем нагрева нагревателя-испарителя, подачи в камеру азотоводородной смеси до давления 1÷2 Па, приложения напряжения постоянного тока 200÷600 В между нагревателем-испарителем и деталью с одновременным охлаждением обрабатываемой детали до получения градиента температуры 700÷1400°C.

Недостатком известного способа являются низкая твердость и недостаточная прочность сцепления покрытия с обрабатываемой деталью из-за внутренних напряжений в поверхностных слоях и в покрытии, которые возникают при конденсации покрытия на охлаждаемой детали.

В качестве прототипа выбран способ получения износостойкого покрытия для режущего инструмента, описанный в патенте RU №2423547, C23C 14/24, 2011. Способ включает вакуумное ионно-плазменное нанесение износостойкого покрытия на основе сложного нитрида титана-хрома-циркония, при нанесении покрытия в качестве дополнительных компонентов используют алюминий и ниобий в количестве 1÷5 ат.% и содержание циркония более 5 ат.%. Нанесение покрытия осуществляют с помощью расположенных горизонтально в одной плоскости трех дуговых испарителей, подключенных к сепаратору капельной фазы, следующих составов титан-алюминевый катод из сплава ВТ-5, комбинированный цирконий-ниобиевый катод и хромовый катод.

Недостатком нанесения известного способа, является то, что покрытие не достигает максимальной твердости, определенной структурой кристаллов нитрида. В результате этого покрытие в большей мере подвергается износу, в нем быстро зарождаются и распространяются трещины, приводящие к разрушению покрытия.

Технической задачей предлагаемого изобретения является получение износостойкого покрытия с высокой твердостью.

Указанный технический результат при осуществлении изобретения достигается тем, что в способе получения износостойкого покрытия, включающем вакуумное ионно-плазменное нанесение покрытия на основе сложного нитрида металлов с помощью нескольких дуговых испарителей, нанесение покрытия осуществляют в среде азотокислородной смеси с содержанием кислорода 1÷3 масс.% при давлении 0,07÷0,45 Па с использованием по меньшей мере двух дуговых испарителей, один из которых содержит гафниевый или циркониевый катод, остальные титановые.

Техническим результатом изобретения является повышение твердости и износостойкости нитридного покрытия и, как следствие, повышение работоспособности инструмента.

Сущность изобретения заключается в том, что при использовании предлагаемого способа на поверхности обрабатываемого инструмента образуется покрытие из нитридов титана и гафния (Ti,Hf)N или циркония (Ti,Zr)N, в объеме которого случайно расположены наноразмерные частицы оксидов гафния или циркония.

В процессе осаждения покрытия в среде азотокислородной смеси в первую очередь образуются кристаллы HfO2 или ZrO2. Это обусловлено тем, что скорость взаимодействия циркония или гафния с кислородом в 50 раз выше, чем с азотом («Электросварка» В.П. Фоминых, А.П. Яковлев, 1976, 288 стр.). Образовавшиеся в плазме кристаллы оксидов кубической сингонии, являющиеся центрами кристаллизации, заряжаются отрицательно и обрастают нитридной фазой, образуя наноразмерный кластер с ядром повышенной твердости. Кубическая структура кристаллов оксидов сохраняется за счет стабилизации нитридами. Формирование кластерной структуры происходит только при малой концентрации кислорода в азотокислородной смеси (1-3 масс.%), так как при этом не протекает процесс собирательной рекристаллизации оксидов циркония или гафния, следовательно, невозможен рост кристаллов оксидов.

Покрытие, структурированное таким образом, обладает высокой твердостью, превышающей почти в 2 раза твердость покрытия из нитридов титана и циркония или гафния (см. таблицу). Кроме того, случайно расположенные в покрытии структурированные кластеры с ядром повышенной твердости, состоящим из оксидов гафния или циркония, обеспечивают высокую износостойкость покрытия.

При таком осаждении содержание оксида титана в покрытии незначительно из-за низкой скорости образования конденсата оксида титана по сравнению с оксидом циркония или гафния. Это объясняется тем, что образование оксида циркония или гафния термодинамически более выгодно, чем оксида титана (энтальпия образования оксида титана на 15÷20% ниже, чем циркония и гафния).

Оптимальный диапазон содержания кислорода в реакционной газовой смеси - 1÷3 масс.%. Дальнейшее увеличение количества кислорода приведет к росту микродеформаций, появлению дополнительных остаточных напряжений и отслоению покрытия, следовательно, к снижению износостойкости. При уменьшении количества кислорода менее 1 масс.% также уменьшается и объем оксидной фазы из HfO2 или ZrO2 в покрытии, в результате чего падает износостойкость покрытия.

Для того чтобы обеспечить высокую адгезионную прочность покрытия и его стойкость к образованию и распространению трещин без снижения микротвердости, содержание нитрида титана в покрытии должно составлять не менее 50 масс.%. Это достигается использованием, по меньшей мере, двух катодов один из которых гафниевый (циркониевый), остальные титановые.

Для процесса ионно-плазменной конденсации основным, влияющим на износостойкость параметром, является давление реагирующего газа.

При низком давлении азотокислородной смеси в камере (менее 0,07Па) образуются плотные бестекстурные беспористые покрытия с большим содержанием капельной фазы, которая в случае расположения на границе конденсат-подложка является причиной снижения прочности их сцепления.

При давлении реакционного газа 0,07÷0,45 Па формируется мелкая плотная текстура, которая характеризуется оптимальным соотношением металлической и ионной составляющих связи. При этом содержание капельной фазы уменьшается.

При дальнейшем повышении давления (более 0,45 Па) происходит резкое увеличение количества пор и отслоений в покрытии.

Поскольку электронная структура и размеры атомов и ионов циркония и гафния почти одинаковы, то чрезвычайно близки и их химические свойства. Кроме того, оксиды циркония и гафния кубической структуры образуются при одинаковых условиях, поэтому при нанесении покрытия по предлагаемому способу структура покрытий (Ti,Hf)N+HfO2 и (Ti,Zr)N+ZrO2 будет одинакова, и, следовательно, в механических свойствах отличие будет незначительно. Поэтому для экспериментальной проверки предлагаемого способа было нанесено покрытие (Ti,Hf)N+HfO2.

Ниже приведены конкретные примеры осуществления предлагаемого способа.

Пример 1.

Сверла из стали Р19 промывают в ультразвуковой ванне в бензине БР-1, поверхность протирают салфеткой увлажненной этиловым спиртом и помещают на внутрикамерной технологической оснастке планетарного механизма вращения установки «ННВ-6,6-И1», снабженной тремя вакуумными дуговыми испарителями. Один катод изготовлен из гафния ГФЭ-1, остальные два изготовлены из титана ВТ 1-00. Откачивают камеру до давления 0,01÷0,02 Па, включают планетарный механизм вращения, подают на него потенциал смещения 0,8÷1 кВ и проводят очистку и нагрев до 550°C ионами титана при токе дуги 65 А. После очистки в камеру напускают реагирующий газ, представляющий собой смесь азота с кислородом с содержанием кислорода 1÷3 масс.%. Затем при потенциале смещения 200 В, при токе испарителей титана - 65 А, гафния - 75 А и давлении 0,01÷0,05 Па на сверла в течение 60 минут непрерывно осаждается покрытие (Ti,Hf)N+HfO2. После нанесения покрытия отключают дуговые испарители, подачу реакционного газа, планетарный механизм вращения и снимают потенциал смещения. Через 30 минут камеру открывают и извлекают сверла с покрытием.

Пример 2 аналогичен примеру 1, но покрытие наносят при давлении азотокислородной смеси 0,07÷0,4 Па.

Пример 3 аналогичен примеру 1, но покрытие наносят при давлении азотокислородной смеси 0,8÷1,0 Па.

Пример 4.

Для сравнения на сверла из стали Р19 при тех же условиях наносили покрытие (Ti,Hf)N.

Для исследования структуры и твердости покрытий, полученных по предлагаемому способу, последние наносили также на пластины из поликорунда.

Структуру покрытия, а также распределение механических неоднородностей определяли с помощью сканирующего нанотвердомера «Наноскан-3D». При сканировании поверхности с поддержанием постоянного сдвига частоты колебаний одновременно с высотой рельефа записывалось изменение амплитуды колебаний зонда. Полученные изображения представляют собой карту распределения модуля упругости Юнга покрытия по поверхности. Такое сканирование позволило выявить в покрытии наличие сфероидальных частиц (кластеров) более высокой твердости, чем твердость нитридов титана и гафния или циркония. Кроме того, динамическое наноиндентирование на приборе «Наноскан-3D», в соответствии с ISO 14577, показало, что сфероидальные частицы (кластеры) имеют размеры 50-100 нм.

Твердость покрытия определяли на микротвердомере HMV-2 фирмы Shimadzu по ГОСТ 9450-76.

Износостойкость покрытия определяли в производственных условиях: проводили сверление валов из стали 40Х сверлами 260 Р19, 260Р33А с покрытием (Ti,Hf)N+HfO2. Критерием износа служило затупление режущей кромки. Полученные результаты приведены в таблице.

Из приведенных в таблице данных видно, что твердость покрытия, нанесенного по предлагаемому способу, и его износостойкость в 2 раза превышают твердость и износостойкость покрытия из нитридов титана и гафния (Ti,Hf)N. Это свидетельствует о том, что покрытие, нанесенное по заявляемому способу, имеет более упорядоченную структуру и обладает оптимальными физико-механическими свойствами.

Таблица
Результаты испытаний инструмента с износостойким покрытием
Наименование инструмента, материал, покрытие Давление азотокислородной смеси в камере, Па Микротвердость покрытия. ГПа Стойкость при операции сверления, мин
1 Сверло 260 Р19, 260Р33А, покрытие из (Ti,Hf)N+HfO2 0.01÷0,05 25÷33 94
2 Сверло 260 Р19, 260Р33А, покрытие из (Ti,Hf)N+HfO2 0,07÷0,45 43÷47 162
3 Сверло 260 Р19, 260Р33А, покрытие из (Ti,Hf)N+HfO2 0,8÷1 38÷42 105
4 Сверло 260 Р19, 260Р33А, покрытие из (Ti,Ht)N - 24÷25 85
5 Сверло 260 P19, 260Р33А, без покрытия _ - 47
Прототип Покрытие из (TiAlCrZrNb)N - 31 102*
* расчетное значение

Таким образом, предлагаемый способ по сравнению с прототипом обеспечивает увеличение износостойкости и твердости покрытия на ~60%. Изделия с такими покрытиями могут найти широкое применение в различных областях промышленности, науки и техники.

Способ получения износостойкого покрытия, включающий вакуумное ионно-плазменное нанесение покрытия на основе сложного нитрида металлов в вакуумной камере с помощью дуговых испарителей, отличающийся тем, что нанесение покрытия осуществляют в камере с использованием по меньшей мере двух дуговых испарителей в среде азотокислородной смеси с содержанием кислорода 1-3 мас.% при давлении 0,07-0,45 Па, при этом один из испарителей содержит гафниевый или циркониевый катод, остальные титановые.



 

Похожие патенты:

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к нанесению износостойких многослойных покрытий и может быть использовано в машиностроительной, добывающей и перерабатывающей промышленности, инструментальном и ремонтном производствах.

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к испаряющемуся материалу и способу его получения, который может быть использован при изготовлении магнитов с повышенной коэрцитивной силой.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. .

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения вакуумно-плазменным методом износостойких многослойных покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения вакуумно-плазменным методом износостойких многослойных покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения вакуумно-плазменным методом износостойких многослойных покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. .

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к нанесению износостойких многослойных покрытий и может быть использовано в машиностроительной, добывающей и перерабатывающей промышленности, инструментальном и ремонтном производствах.

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. .

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения вакуумно-плазменным методом износостойких многослойных покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения вакуумно-плазменным методом износостойких многослойных покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения вакуумно-плазменным методом износостойких многослойных покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. .

Изобретение относится к способу нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, молибдена и алюминия при их соотношении, мас.%: титан 86,0 - 91,0, молибден 2,0 - 3,0, алюминий 7,0 - 11,0, затем - промежуточный слой из карбонитрида соединения титана, молибдена и алюминия при их соотношении, мас.%: титан 86,0 - 91,0, молибден 2,0 - 3,0, алюминий 7,0 - 11,0, и верхний - из нитрида соединения титана и молибдена при их соотношении, мас.%: титан 95,5 - 97,0, молибден 3,0 - 4,5. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый и второй из которых выполняют составными из титана и молибдена и располагают противоположно друг другу, а третий изготавливают составным из титана и алюминия и располагают между ними. Нижний и промежуточный слои наносят с использованием всех трех катодов, а верхний слой - с использованием первого и второго катодов. Изобретение позволяет повысить работоспособность режущего инструмента. 1 табл.

Изобретение относится к способам нанесения износостойких покрытий на рабочие элементы технологического оборудования и может быть использовано в металлообработке, в медицинском инструментарии, в инструментальном и ремонтном производствах для получения покрытий инструмента. Покрытие наносят вакуумным ионно-плазменным методом с использованием по меньшей мере двух дуговых испарителей, один из которых содержит гафниевый или циркониевый катод, остальные титановые. Нанесение покрытия осуществляют в камере в среде азотокислородной смеси с содержанием кислорода 1÷3 мас. при давлении 0,07÷0,45 Па. Техническим результатом изобретения является увеличение твердости и износостойкости покрытия и, как следствие, повышение работоспособности инструмента. 1 табл., 4 пр.

Наверх