Способ сравнительной оценки свойств материалов



Способ сравнительной оценки свойств материалов
Способ сравнительной оценки свойств материалов
Способ сравнительной оценки свойств материалов
Способ сравнительной оценки свойств материалов
Способ сравнительной оценки свойств материалов
Способ сравнительной оценки свойств материалов
G01N29/00 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2495412:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУ ВПО "КнАГТУ") (RU)

Использование: для сравнительной оценки свойств материалов. Сущность заключается в том, что осуществляют инденторное нагружение исследуемых материалов, регистрацию сигналов акустической эмиссии в процессе нагружения, обработку сигналов акустической эмиссии и выявление параметра сигналов, информативного за физико-механическую характеристику материала и, соответственно, за эксплуатационное свойство изделия, выполненного из данного материала, при этом в качестве информативного параметра сигнала используют энергию импульсов акустических сигналов, а сравнение эксплуатационных свойств изделий, выполненных из разных исследуемых материалов, производят по величинам накопленной энергии импульсов за время нагружения, в том числе по величине угла наклона касательной на графике зависимости «накопленная величина энергии сигналов - время нагружения материала». Технический результат: повышение производительности оценки свойств материала и расширение технических возможностей, а именно возможность применения способа для оценки коррозионной стойкости материалов с покрытиями. 1 з.п. ф-лы, 6 ил., 1 табл.

 

Решение относится к области микромеханических исследований физико-механических характеристик материалов.

Данные исследования проводят с регистрацией сигналов акустической эмиссии в процессе взаимодействия индентора с материалом сравниваемых образцов. По результатам испытаний проводят обработку параметров сигналов акустической эмиссии, выявляют параметр, информативный за исследуемую физико-механическую характеристику материала, оценивают адекватность соотношения этой характеристики с эксплуатационным свойством изделия.

Известно решение [Патент РФ №2138038 на изобретение «Способ контроля физико-механических свойств изделий», 6 G01N 29/14, 1999, Бюл. №26], в котором во время нагружения индентором изделий одновременно регистрируют сигналы акустической эмиссии, формирующиеся в материале изделий, а контроль таких физико-механических характеристик материала как качество сцепления покрытия с основой материала и трещиностойкость материала осуществляют через некоторый критерий (скорость изменения плотности энергии сигналов акустической эмиссии) и построение графика его зависимости от числа сигналов. Недостатком данного решения является его высокая трудоемкость.

Известно также решение [Патент РФ №2138039 на изобретение «Способ контроля свойств и диагностики разрушения изделий», 6 G01N 29/14, 1999, Бюл. №26], в котором во время нагружения индентором изделий одновременно регистрируют сигналы акустической эмиссии, формирующиеся в материале изделий, а контроль трещиностойкости материала осуществляют с помощью того же критерия (скорость изменения плотности энергии сигналов акустической эмиссии) по его величине. Недостатком данного решения также является его высокая трудоемкость.

Наиболее близким к заявляемому решению является решение [Патент РФ №2140076 на изобретение «Способ акустического контроля трещиностойкости изделий», 6 G01N 29/14, 1999, Бюл. №29], в котором нагружение осуществляют маятниково-акустическим методом, т.е. с изменением глубины внедрения индентора в материал изделия по дуге траектории движения маятника, несущего индентор, с одновременной регистрацией сигналов акустической эмиссии. Затем по результатам регистрации сигналов строят зависимость спектральной плотности сигналов от их частоты, определяют частоту, соответствующую максимальному экстремуму спектральной плотности и по величине этой частоты судят о трещиностойкости материала. Недостатком решения также является высокая трудоемкость способа.

Указанный недостаток един для всех трех указанных известных решений. Это высокая трудоемкость способов. Она в каждом из этих решений разная и связано это с требуемой точностью оценки той или иной физико-механической характеристики исследуемого материала. Однако высокая точность требуется не всегда. Если требуется оценить характеристики материалов, существенно отличающихся друг от друга, то такая точность не нужна. Важно определить качественно: этот материал лучше, чем другой сопротивляется такому-то виду разрушения. Часто этого достаточно и не требуется знать, на сколько при этом увеличится качество изделия (срок его службы и т.д.). Если это и потребуется в дальнейшем, то можно применить дополнительно какое-либо из указанных решений.

В рамках данного решения рассматривается задача оперативного (без излишних затрат времени) сортирования (расположения в последовательность) нескольких сравниваемых материалов по какому-либо эксплуатационному свойству изделия через определение физико-механической характеристики при инденторно-акустическом методе исследования, в том числе при маятниково-акустическом.

Техническим результатом заявляемого решения является повышение производительности оценки свойств материала и расширение технических возможностей, а именно возможность применения способа для оценки коррозионной стойкости материалов с покрытиями.

Указанный технический результат достигается за счет того, что для оценки сравниваемых материалов по работоспособности изделий, выполненных из этих материалов, используют энергию импульсов акустических сигналов, а ранжирование (чередование в очередности) материалов производят по величинам накопленной энергии за время нагружения, в частности по величине угла наклона касательной на графике зависимости «накопленная величина энергии сигналов - время нагружения материала».

Таким образом, заявляемое решение, как и прототип, включает в себя инденторное нагружение исследуемых материалов, регистрацию сигналов акустической эмиссии в процессе нагружения, обработку сигналов акустической эмиссии и выявление параметра сигналов, несущего информацию о физико-механической характеристике материала и, соответственно, за эксплуатационное свойство, например, за работоспособность изделия, выполненного из данного исследуемого материала. Однако заявляемое решение отличается тем, что в качестве информативного параметра сигнала используют энергию импульсов акустических сигналов, а сравнение эксплуатационных свойств изделий, выполненных из разных исследуемых материалов, производят по величине угла наклона касательной на графике зависимости «накопленная величина энергии сигналов - время нагружения материала». Эта величина угла наклона позволяет ранжировать (расположить в последовательности) характеристики материалов и эксплуатационные свойства изделий, выполненных из них.

На фиг.1 показан пример регистрации накопленной энергии сигналов акустической эмиссии при индентировании двух сравниваемых материалов, на фиг.2 показана компоновка фотографий следа взаимодействия индентора с исследуемым материалом, на фиг.3 - примеры регистрации накопленной энергии сигналов акустической эмиссии, на фиг.4 - зона разрушения покрытия в месте индентирования материала, на фиг.5 - запись параметров регистрация сигналов акустической эмиссии материала изделия, находящегося в исходном состоянии, на фиг.6 - аналогичные записи для материала, подвергнутого коррозионному воздействию.

Обоснование способа произведено на примере фиг.1. Пусть индентированию подвергался некоторый материал Me1. В процессе индентирования регистрировались сигналы акустической эмиссии, формируемые в испытываемом материале. По результатам регистрации сигналов построена зависимость «накопленная энергия E сигналов - время индентирования». Эта зависимость представлена линией 1 на фиг.1. Время нагружения (индентирования) материала составило 57,23 секунд, энергия составила 6,37 милливольт в квадрате в секунду. В принятом масштабе построения данной зависимости линия 1 наклонена к горизонту на некоторый угол α1. Точно в таких же условиях нагружения испытывали второй материал Ме2. Для него на фиг.1 построена аналогичная линия 2, наклон которой к горизонту α2 больше, чем α1. Сравнение этих двух линий показывает, что та же самая величина энергии сигналов была при нагружении второго материала достигнута за значительно меньшее время нагружения. Если предположить, что величина энергии сигналов акустической эмиссии адекватно отражает способность материала сопротивляться деформации (и разрушению) испытываемого материала, то есть основания предположить, что угол α косвенно характеризует способность материала сопротивляться разрушению. Причем, чем меньше этот угол, тем лучше материал сопротивляется разрушению, тем выше следует ожидать работоспособность изделия, выполненного из такого материала и эксплуатируемого в условиях, инициирующих в материале механизм разрушения, сходный с тем, который имеет место при индентировании.

Ниже приведены примеры, доказывающие правомерность указанных предположений.

Пример 1. Брали инструментальный материал марки BK8. Нагружали маятниковым индентированием (индентор закреплен в качающемся маятнике и перемещается по дуге окружности с увеличением глубины внедрения индентора в поверхностные слои материала от нуля до максимума и последующим уменьшением глубины внедрения от максимума до нуля, сущность такого нагружения изложена в работе [Мокрицкий Б.Я., Бурков А.А. Методика оценки прочности инструментальных материалов микроиндентированием // Технология металлов, №7, 2011, с.20-26], результаты микроразрушения поверхности образца в процессе такого нагружения представлены на фиг.2, где позицией 1 обозначен участок следа взаимодействия индентора с инструментальным материалом BK8+Zr+ZrN в начале внедрения (заглубления) индентора, позицией 2-е увеличивающейся глубиной, позицией 3-е максимальной глубиной, позицией 4 - с убывающей глубиной, позицией 5 - участок выхода индентора из материала образца) с регистрацией сигналов акустической эмиссии, образующейся в результате взаимодействия индентора и образца. В некоторый момент времени tк испытания прекращали (время взаимодействия индентора и материала образца составило tк), строили зависимость «накопленная энергия сигналов - время» (Фиг.3). Времени tк соответствовала максимальная величина энергии Emax. Начало и конец зависимости соединяли прямой линией а-а, фиксировали ее угол наклона α. Для случая, представленного на фиг.3а, он составил 53 градуса. На зависимости в моменты времени t1 и t2 наблюдаются скачки энергии. Очевидно, это связано с моментами перехода от механизма упругой к механизму пластической деформации (время t1) и от механизма пластической деформации к хрупкому выкрашиванию испытываемого материала.

Брали другой материал, а именно BK8 с износостойким однослойным покрытием TiN, подвергали нагружению в точно таких же условиях, получили зависимость, представленную на фиг.3б. Из этой зависимости следует, что за такое же время нагружения tк максимальная величина энергии E1 оказалась меньше Emax, соответственно и меньшим оказался угол β наклона линии а-а.

Металлорежущие инструменты, выполненные из указанных материалов, эксплуатировали в одинаковых условиях резания, а именно при точении труднообрабатываемых материалов (режим резания, марка обрабатываемых материалов и иные условия эксплуатации указаны в работе [Мокрицкий Б.Я. «Повышение работоспособности металлорежущего инструмента // Технология машиностроения, №8, 2010, с.33-36], но важны не они, а спокойный или знакопеременный циклический характер нагружения материала инструмента), где превалирует механизм диффузионно-абразивного изнашивания инструментального материала. Период стойкости инструмента, выполненного из материала BK8+TiN оказался выше, чем у инструмента ВК8 (специально не указываем, на сколько выше, чтобы не возникала потребность затем сопоставлять прирост периода стойкости с изменением величины угла наклона линии а-а).

Сравнение зависимостей, представленных на фиг.3а (это инструмент BK8) и на фиг.3б (это инструмент BK8+TiN), показывает, что период стойкости больше у того инструмента, для материала которого характерен меньший (угол β меньше угла α) угол наклона линии а-а.

Такой же инструмент эксплуатировали при торцевом фрезеровании таких же материалов, т.е. в условиях образования и роста трещин в инструментальном материале в силу циклического характера его нагружения. Период стойкости инструмента из BK8+TiN оказался чуть выше, чем BK8, это отличие незначительное. Обращаем внимание вновь на фиг.3б. Там проведена линия а-б. Она соответствует моменту времени ti, в который, как и в момент времени tк, достигнут максимум энергии E1. Угол φ наклона линии а-б тоже, как и периоды стойкости инструментов, оказался близким к углу β наклона линии а-а.

Более подробный анализ полученных данных показал, что в момент времени ti произошло интенсивное растрескивание покрытия, выкрашивание отдельных участков покрытия с поверхности инструмента и далее он работал уже без покрытия. Иначе говоря, при необходимости более тщательного сопоставления сравниваемых материалов между собой можно прогнозировать поведение изделий по диапазону изменения угла наклона линии, т.е. по разнице углов φ и β. При этом видно, что некоторый одинаковый уровень энергии Ei достигается на материале BK8 значительно быстрее (t1), чем на материале BK8+TiN(ti).

Рассмотрим этот пример с позиции достижения технического результата.

По способу-прототипу (Патент РФ №2140076) для оценки физико-механических свойств материалов BK8 и BK8+TiN и для прогнозирования работоспособности металлорежущих инструментов, выполненных из этих материалов, по частотам сигналов акустической эмиссии требуется в общей сложности около 14 минут. Заявляемый способ позволяет это осуществить за 9 минут. Таким образом, технический результат достигается.

Пример 2. Ставилась задача по результатам заявляемого способа оценить работоспособность сразу нескольких материалов, расположить их в рандоментрический ряд по изменению прогнозируемой работоспособности и затем проверить это по результатам фактического испытания работоспособности инструмента в реальных условиях резания.

Брали материалы BK8, BK8+TiN, Т15K6, ТТ10K8Б+Zr+ZrN. Аналогичным образом получали для них зависимости, представленные на фиг.3, а именно: фиг.3а - для BK8; фиг.3б - для BK8+TiN; фиг.3в - для Т15K6; фиг.3г - для ТТ10K8Б+Zr+ZrN. Определяли для них соответствующие углы наклона линии а-а. По величинам этих углов прогнозировали в какой последовательности расположатся инструменты, выполненные из этих материалов, в ряду работоспособности, т.е. по величине периода стойкости при токарной обработке в условиях резания с превалированием разрушения через механизм трещинообразования. Результаты прогнозирования приведены в таблице 1.

Таблица 1
Исходная информация для ранжирования инструментов по их прогнозируемой работоспособности
Последовательность роста величин углов наклона линии а-а ψ=38 β=41 λ=51 α=53
Прогнозируемый порядок расположения инструмента в ряду снижения работоспособности 1 (лучший) 2 3 4 (худший)
Материал инструмента ТТ10K8Б+Zr+ZrN BK8+TiN T15K6 BK8
Фактический порядок расположения инструмента в ряду при обработке резанием 1 2 3-4 3-4

Лучшая (первое место) работоспособность по меньшей величине угла наклона линии а-а прогнозировалась инструменту, выполненному из материала ТТ10K8Б+Zr+ZrN. Худшая (последнее четвертое место) - BK8.

Инструментам, выполненным из BK8+TiN и BK8, соответственно прогнозировались 2 и 3 места.

Испытывали эти инструменты при обработке резанием. Осуществляли токарную обработку сложнообрабатываемой стали марки ШХ15 при наружном точении цилиндрической поверхности заготовки диаметром 80 мм с продольным пазом шириной 10 мм при скорости резания 80-96 м/мин, подаче 0,21 мм/об. заг., глубине резания 1,2 мм. Износ (выкрашивание) режущей кромки инструмента доводили до 0,8 мм. В результате (нижняя строка таблицы 1) лучшим оказался инструмент, выполненный из материала ТТ10K8Б+Zr+ZrN. Худшими были (разница в периоде стойкости несущественна) оказались два инструмента: Т15K6 и BK8 (период стойкости у Т15K6 на 3 минуты хуже, чем у BK8).

Эти полученные данные хорошо кореллируют с данными (строка 2 таблицы 1), полученными по заявляемому способу.

Сравнение трудоемкости (по затраченному времени, т.е. производительности) показало, что заявляемый способ на 27% эффективнее, чем способ-прототип (по частотному спектру).

Заявляемый способ позволяет получить дополнительную информацию. Так, применительно к фиг.3б видно, что максимальная величина энергии E1 сигналов достигается в момент времени ti и затем эта величина некоторое время (ti-tk) остается постоянной. Соответственно на графике представляется возможным провести линию а-б и получить угол φ ее наклона. Такие же линии а-б можно провести на фиг.3в и фиг.3г. Соответствующие углы δ, θ показывают, что максимальные величины энергии достигаются при ti и tj. Но это по-прежнему позволяет ранжировать исследуемые материалы в той же последовательности.

Имеется еще интересная особенность. Дело в том, что в процессе эксплуатации инструмента при резании на графике зависимости величины износа инструмента от времени его эксплуатации в большинстве случаев легко выделяется участок приработки, участок нормального износа и участок интенсивного износа с последующим разрушением. Заявляемый способ позволяет сравнивать материалы (инструмент) по аналогичным переломным участкам на зависимостях «накопленная энергия сигналов акустической эмиссии - время нагружения». Так, на фиг.3а легко вычленить моменты резкого изменения интенсивности накопления энергии в моменты времени t1 t2. Имеются аналогии (моменты времени ti, tj) на фиг.3в и фиг.3г. Например, угол µ, как и угол ω, характеризует момент резкого всплеска энергии, т.е. начала интенсификации процесса разрушения исследуемого материала. Сравнение величин этих углов также укладывается в рамки заявляемого способа и позволяет сохранить установленную выше последовательность расположения инструментов в ряду убывания их работоспособности.

Пример 3. Ставили задачу определить приемлемость заявляемого способа к оценке коррозионной стойкости материалов.

Круг коррозионно-стойких материалов широк. И методов повышения коррозионной стойкости материалов много. Одним из распространенных способов повышения коррозионной стойкости является применение защитных покрытий, в том числе нитридных. Твердосплавные материалы также относятся к коррозионностойким. Из них изготавливают различные изделия, работающие в том числе, в условиях газовой, химической или термохимической коррозии, а также в кислой жидкостной среде. В силу этого испытаниям подвергли твердый сплав с покрытием. Процесс коррозии осуществляли путем кипячения образцов в воде. Инициировали место коррозии путем образования концентратора. Концентратор создавали внедрением индентора твердомера с образованием отслоения покрытия (фиг.4).

Результаты регистрации накопленной энергии приведены на фиг.5а для образца, не подвергавшегося кипячению, на фиг.6 - после кипячения в воде. Из сравнения графиков видно, что за одно и то же время tк нагружения индентором образец, находящийся в исходном состоянии, показал некоторое базовое Ебаз=80 значение накопленной энергии, тот же образец, подвергшийся коррозионному воздействию в процессе кипячения, показал на порядок большее Екор=800 значение накопленной энергии. Это говорит о том, что после кипячения прочность сцепления покрытия снизилась настолько, что это привело к более существенному трещинообразованию в процессе индентирования. Коль процесс трещинообразования протекал более интенсивно, то трещиностойкость такого материала снизилась, его коррозионная стойкость ниже и следует ожидать худшую работоспособность (угол наклона мнимой линии а-а, которую можно провести на фиг.5 и фиг.6 свидетельствует о том же).

Для обоснования высказанных положений дополнительно показаны графики накопления событий в процессе индентирования (фиг.5б и фиг.6б) и графики интенсивности (количества за единицу времени) сигналов (фиг.5г и фиг.6г). Видно, что количество событий (сигналов акустической эмиссии с регламентированной величиной амплитуды) возросло с 30 до 1000. Интенсивность сигналов тоже возросла в 1,7 раза. Все это подтверждает более интенсивный процесс трещинообразования образца после кипячения и, следовательно, снижение коррозионной стойкости образцов.

Обращаем внимание, что способ-прототип не позволял оценить коррозионную стойкость материалов. Заявляемый способ это позволяет. Таким образом, у заявляемого способа помимо повышения производительности имеется и дополнительный технический результат - расширение технических возможностей, а именно возможность применения способа для оценки коррозионной стойкости материалов с покрытиями.

Решение применимо для оценки таких физико-механических характеристик, как трещиностойкость материалов, качество сцепления покрытия с основой материала с тем, чтобы затем по ним судить о работоспособности изделий, выполненных из сравниваемых материалов. В качестве критерия работоспособности изделий может быть принят любой из общепринятых критериев для конкретных условий эксплуатации. Например, для механической обработки заготовок лезвийным металлорежущим инструментом это может быть период стойкости инструмента, т.е. время работы до достижения предельно допустимой величины износа или число деталей, изготовленных за этот период. Или, например, остаточный ресурс стенок резервуара, выполненного из коррозионно-стойкого материала и работающего в агрессивных условиях химического или нефтегазового производства.

1. Способ сравнительной оценки свойств материалов, включающий инденторное нагружение исследуемых материалов, регистрацию сигналов акустической эмиссии в процессе нагружения, обработку сигналов акустической эмиссии и выявление параметра сигналов, информативного за физико-механическую характеристику материала и, соответственно, за эксплуатационное свойство изделия, выполненного из данного материала, отличающийся тем, что в качестве информативного параметра сигнала используют энергию импульсов акустических сигналов, а сравнение эксплуатационных свойств изделий, выполненных из разных исследуемых материалов, производят по величинам накопленной энергии импульсов за время нагружения, в том числе по величине угла наклона касательной на графике зависимости «накопленная величина энергии сигналов - время нагружения материала».

2. Способ по п.1, отличающийся тем, что его применяют для сравнительной оценки коррозионной стойкости материалов с покрытиями.



 

Похожие патенты:

Изобретение относится к медицинской технике, а именно к устройствам для абляции ткани. Устройство содержит катетер с излучателем энергии и фотоакустическим датчиком.

Изобретение относится к способу определения консистенции пищевого материала. Способ определения консистенции пищевого продукта содержит стадии, на которых осуществляют приложение вибрационного импульса с заданной частотой к пищевому материалу, измерение вибрационного отклика пищевого материала на вибрационный импульс и сравнение вибрационного отклика с опорной величиной, определенной перед измерением.

Изобретение относится к железнодорожному транспорту и может быть использовано для контроля технического состояния колесной пары железнодорожного транспорта при его движении по рельсовому пути.

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения влажности. .

Изобретение относится к измерительной технике и может быть использовано для оценки технического состояния работающего длительное время силового высоковольтного энергетического оборудования.

Изобретение относится к способу и устройству для классификации генерирующих звук процессов, например, звуковых сигналов, которые генерируются при рабочих процессах машины или при химических процессах установки.

Изобретение относится к области медицинского приборостроения, в частности к устройствам для ультразвуковой эхо-локации внутренних органов. .

Изобретение относится к области неразрушающих методов контроля биологических объектов. .

Изобретение относится к области неразрушающего контроля и может найти применение при выявлении нарушений соединения полимерного покрытия с металлическими трубами.

Изобретение относится к области геоакустики и может быть использовано для определения расположения трубопровода, находящегося в грунте и имеющего запорно-регулирующую аппаратуру.

Использование: для дефектоскопии и толщинометрии при исследовании различного рода материалов. Сущность: заключается в том, что пьезоэлектрический преобразователь содержит герметичный корпус с демпфирующим веществом, пьезоэлементы, установленные внутри корпуса и расположенные в корпусе симметрично относительно акустической оси преобразователя, и линзу, сопряженную с пьезоэлементами со стороны излучающей поверхности пьезоэлементов, при этом пьезоэлементы расположены под острым углом к акустической оси пьезоэлектрического преобразователя, акустические оси пьезоэлементов пересекаются между собой на продольной оси преобразователя в направлении излучения преобразователя, причем пьезоэлементы имеют относительно продольной оси преобразователя попарно одинаковую форму, с электродами на их противоположных поверхностях, подключенными к электрическому герметичному разъему, вектор поляризации всех пьезоэлементов направлен либо в сторону излучения, либо в сторону демпфирующего вещества, электроды пьезоэлементов, расположенные с одной стороны, последовательно электрически соединены между собой, акустические оси всех пьезоэлементов расположены в одной плоскости, проходящей через продольную ось преобразователя, а линза выполнена общей для всех пьезоэлементов или состоит из отдельных секций, соединенных между собой в местах сопряжения связующим веществом, например клеем или полимерным компаундом. Технический результат: увеличение длины рабочей зоны пьезоэлектрического преобразователя и расширение его диаграммы направленности. 3 з.п. ф-лы, 2 ил.

Использование: для идентификации водородного охрупчивания легких сплавов на основе титана. Сущность заключается в том, что измеряют зависимость скорости распространения ультразвуковой волны в легких сплавах от содержания в них водорода. Способ отличается тем, что на поверхности металла устанавливают источник и приемник акустического излучения, измеряют скорость распространения УЗ волн в зависимости от углового положения источника и приемника, изменяют расстояние между приемником и датчиком излучения, и при каждом изменении расстояния и угла находят максимальную скорость УЗ волн, соответствующую определенному содержанию водорода в металле, и по эталонной зависимости скорости УЗ волн от концентрации водорода в металле находят концентрацию водорода, соответствующую водородному охрупчиванию легкого сплава. Технический результат: увеличение точности идентификации водородного охрупчивания легких сплавов на основе титана. 3 ил.

Использование: для контроля коррозии. Сущность: заключается в том, что при моделировании поверхности объекта, используя ультразвуковые волны, передаваемые вдоль поверхности, выполняют этапы на которых: передают ультразвуковые волны по путям вдоль поверхности и определяют время распространения ультразвуковых волн по путям. По меньшей мере, некоторые из ультразвуковых волн показывают моду S0 и имеют скорость, зависящую от частоты. Скорость (с) является относительно высокой для частот вплоть до первой точки перегиба (ВР1), уменьшаясь относительно быстро для частот между первой точкой перегиба (ВР1) и второй точкой перегиба (ВР2), и относительно низкой для частот за второй точкой перегиба (ВР2). Ультразвуковые волны имеют частотный диапазон, который лежит в или ниже первой точки перегиба (ВР1). Технический результат: повышение достоверности получаемых данных при выполнении контроля коррозии. 4 н. и 11 з.п. ф-лы, 8 ил.

Использование: для ультразвукового моделирования. Сущность: заключается в том, что получение температурной модели поверхности (3) объекта (2) с использованием ультразвуковых преобразователей (4, 5) содержит этапы, на которых итерационно корректируют температурную модель с использованием измеренных значений времени прохождения ультразвуковых волн и их основанными на модели прогнозами. Ультразвуковые волны, используемые для температурной модели, предпочтительно представляют собой по существу недисперсионные ультразвуковые волны. Способ может дополнительно содержать уровневую модель поверхности (3), причем уровневую модель получают с использованием по существу дисперсионных ультразвуковых волн и корректируют с использованием температурной модели. Технический результат: обеспечение возможности создания температурной модели поверхности, способной выявлять локальные температурные вариации поверхности с повышенным пространственным разрешением. 5 н. и 13 з.п. ф-лы, 6 ил.

Использование: для определения упругих констант делящихся материалов при повышенных температурах. Сущность заключается в том, что установка для определения упругих констант делящихся материалов при повышенных температурах содержит звуководы, снабженные акустическими изоляторами, между концами звуководов размещен образец из делящегося материала, а на противоположных коцах установлены пьезоэлектрические преобразователи, соединенные с генератором и регистрирующей аппаратурой, при этом образец и часть звуководов окружены нагревателем и помещены они в вакуумную камеру, при этом образец соединен с термопарой, вакуумная рабочая камера помещена в герметичный перчаточный бокс и имеет рубашку охлаждения и протоки охлаждения проточной водой. Технический результат: обеспечение возможности проведения ультразвуковых резонансных испытаний делящихся материалов при повышенных температурах, получение значений модуля нормальной упругости и коэффициента Пуассона в зависимости от температуры в диапазоне температур 20-600°C, с одновременной защитой персонала и окружающей среды от воздействия испытуемых делящихся материалов. 2 з.п. ф-лы, 1 ил.

Использование: для контроля конструкций с использованием ультразвука в пространствах с малым зазором. Сущность: заключается в том, что контрольный сканер [1000] имеет низкопрофильное строение, предназначенное для вхождения в узкие пространства и контроля конструкций [10], например сварных соединений [13]. Узлы колесной рамы [1100, 1200] перемещают держатель зонда в сборе [1110] с ультразвуковой (US) решеткой [1400], которая испускает ультразвуковые лучи через конструкцию [10] и принимает отраженные звуковые волны. Держатель зонда в сборе [1110] вытягивается, и ультразвуковой луч отклоняется для контроля в узких местоположениях. Узлы колесной рамы [1100, 1200] катятся на колесах [1140, 1240], которые приводит в движение блок кодирования [1250]. Блок кодирования [1250] обеспечивает определенные местоположения для принятых звуковых волн относительно сварного шва. Местоположения и принятые звуковые волны используются для восстановления сигнала, показывающего дефекты внутри конструкции [10]. Колеса [1140, 1240] могут быть магнитными, чтобы удерживаться на контролируемой конструкции [10]. Тормозная система [1600] может применяться для удержания контрольного сканера [1000] в заданном местоположении. Технический результат: обеспечение возможности контроля узких пространств. 2 н. и 12 з.п. ф-лы, 5 ил.
Использование: для неразрушающего контроля труб. Сущность изобретения заключается в том, что излучают внутрь трубы с одного ее конца серию повторяющихся зондирующих акустических сигналов, разделенных интервалами времени между их повторами в серии, детектируют с помощью микрофона отраженные от дефектов внутреннего объема трубы сигналы, измеряют отраженные сигналы и усредняют результаты по всем измерениям серии сигналов, определяют характер дефекта по амплитудно-временным характеристикам усредненного сигнала, при этом длительность интервалов времени между повторами зондирующих акустических сигналов в серии изменяют от сигнала к сигналу в серии таким образом, чтобы интервал времени перед каждым последующим сигналом отличался от предыдущих интервалов времени на величину не менее длительности зондирующего акустического сигнала. Технический результат: обеспечение возможности исключения влияния посторонних шумов и реверберации на результат измерения.

Использование: для контроля перемешивания среды в виде сырой нефти в резервуаре. Сущность изобретения заключается в том, что в процессе перемешивания поочередно каждым обратимым электроакустическим преобразователем излучают широкополосный акустический сигнал через среду к другим обратимым электроакустическим преобразователям, принимают и преобразуют эти сигналы другими, за исключением излучившего этот широкополосный акустический сигнал, обратимыми электроакустическими преобразователями в соответствующие принятые электрические сигналы, при этом обработку принятых электрических сигналов осуществляют путем вычисления взаимных корреляционных функций каждого из принятых электрических сигналов с широкополосным электрическим сигналом, вычисляют общую ширину корреляционных откликов, о завершении перемешивания нефти судят по стабилизации общей ширины корреляционных откликов. Технический результат: повышение точности выявления неоднородностей среды, а также повышение точности определения степени перемешивания. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к лесной, деревообрабатывающей промышленности и может быть использовано при сертификации древесины на корню в условиях лесного хозяйства и лесозаготовок, а также при сертификации древесины круглых и пиленых древесных материалов в условиях переработки древесного сырья и механической обработки древесины. Cпособ осуществляют введением сравнительных испытаний, хотя бы на одной технологической операции механической обработки древесины, между ультразвуковым испытанием на кернах и хотя бы одним стандартизированным способом испытания на стандартных образцах, например, на прочность древесины на образцах размерами 20×20×30 мм, затем определение значений переходного коэффициента от акустических показателей кернов, извлеченных из растущего дерева или круглых и пиленых лесоматериалов, находящихся в штабеле, к прочности древесины на стандартны, образцах, изготовленных из этих же древесных заготовок, а затем применение полученных значений переходного коэффициента на весь объем партии древесины, заготовленной с одной лесосеки или лесного участка. После взятия кернов изготовляют стандартные образцы, их измеряют ультразвуковым прибором, затем стандартные образцы испытывают на механические показатели древесины, а по результатам испытаний рассчитывают переходные коэффициенты между ультразвуковыми показателями кернов и стандартных образцов, а также переходные коэффициенты между ультразвуковыми показателями кернов и механическими показателями стандартных образцов. Достигается повышение надежности испытаний и расширение функциональных возможностей. 1 н.п., 2 з.п. формулы,1 прим., 3 ил.

Использование: для определения типа дефекта в металлических изделиях. Сущность изобретения заключается в том, что выполняют импульсное облучение исследуемой зоны ультразвуковым излучением, регистрацию исходного отраженного сигнала, его компьютерную обработку для определения информативных параметров, по которым судят о наличии и типе дефекта, при этом к исходному отраженному сигналу от каждого обнаруженного дефекта применяют преобразование Гильберта, получая аналитический сигнал, затем вычисляют модуль аналитического сигнала, получая огибающую исходного сигнала, на огибающей находят моменты времени t0, t1, и t2, соответствующие максимуму амплитуды огибающей и половине ее максимального значения слева и справа от максимума, применяя непрерывное вейвлетное преобразование к аналитическому сигналу, по определенной формуле находят зависимость мгновенной частоты от времени, на которой выбирают для дальнейшего анализа частоты ƒ0, ƒ1 и ƒ2, соответствующие моментам времени t0, t1, и t2, затем используя частоты ƒ0, ƒ1 и ƒ2 формируют новые безразмерные параметры - нормированные девиации частоты ƒr1 и ƒr2, отображают значения ƒr1 и ƒr2 в виде точки на двумерной диаграмме, по расположению которой в определенной области диаграммы судят о типе дефекта. Технический результат: обеспечение возможности расширения возможностей определения типа скрытых дефектов при неразрушающем ультразвуковом контроле. 2 ил.
Наверх