Ультразвуковой иммерсионный многосекционный совмещенный пьезоэлектрический преобразователь



Ультразвуковой иммерсионный многосекционный совмещенный пьезоэлектрический преобразователь
Ультразвуковой иммерсионный многосекционный совмещенный пьезоэлектрический преобразователь
G01N29/00 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2499254:

Виногоров Сергей Геннадьевич (RU)
Удалов Александр Владимирович (RU)
Курочкин Александр Сергеевич (RU)

Использование: для дефектоскопии и толщинометрии при исследовании различного рода материалов. Сущность: заключается в том, что пьезоэлектрический преобразователь содержит герметичный корпус с демпфирующим веществом, пьезоэлементы, установленные внутри корпуса и расположенные в корпусе симметрично относительно акустической оси преобразователя, и линзу, сопряженную с пьезоэлементами со стороны излучающей поверхности пьезоэлементов, при этом пьезоэлементы расположены под острым углом к акустической оси пьезоэлектрического преобразователя, акустические оси пьезоэлементов пересекаются между собой на продольной оси преобразователя в направлении излучения преобразователя, причем пьезоэлементы имеют относительно продольной оси преобразователя попарно одинаковую форму, с электродами на их противоположных поверхностях, подключенными к электрическому герметичному разъему, вектор поляризации всех пьезоэлементов направлен либо в сторону излучения, либо в сторону демпфирующего вещества, электроды пьезоэлементов, расположенные с одной стороны, последовательно электрически соединены между собой, акустические оси всех пьезоэлементов расположены в одной плоскости, проходящей через продольную ось преобразователя, а линза выполнена общей для всех пьезоэлементов или состоит из отдельных секций, соединенных между собой в местах сопряжения связующим веществом, например клеем или полимерным компаундом. Технический результат: увеличение длины рабочей зоны пьезоэлектрического преобразователя и расширение его диаграммы направленности. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к ультразвуковой измерительной технике, а именно к пьезоэлектрическим преобразователям и может быть использовано при дефектоскопии и толщинометрии при исследовании различного рода материалов, в частности труб, металлического проката, пластиков и неоднородных материалов, таких например, как сварные конструкции.

Известен ультразвуковой преобразователь, содержащий корпус с протектором в виде усеченного конуса, пьезоэлемент и демпфер, размещенный в корпусе (см. заявку GB №2091520, кл. G01N 29/00, 28.07.1982).

Данный преобразователь создает в исследуемом материале только продольную волну и может быть использован только в области высоких частот, что сужает область его использования. Кроме того, для установки преобразователя на исследуемое изделие необходима смачивающаяся жидкость.

Известен раздельно-совмещенный преобразователь, в корпусе которого установлены под углом 45 градусов излучатель поперечной волны и приемный элемент (см. патент FR №2499248, кл. G01N 29/00, 06.08.1982).

Данный преобразователь работает в высокочастотной области и требует значительных усилий для обеспечения хорошего акустического контакта, что сужает область его использования.

Наиболее близким к изобретению по технической сущности и достигаемому результату является ультразвуковой многоэлементный совмещенный пьезоэлектрический преобразователь, содержащий герметичный корпус с демпфирующим веществом, пьезоэлементы, установленные внутри корпуса и расположенные в корпусе симметрично относительно акустической оси преобразователя, и линза, сопряженная с пьезоэлементами со стороны излучающей поверхности пьезоэлементов (см. патент RU №2082163, кл. G01N 29/24,20.06.1997).

Данный преобразователь выполнен с возможностью использования преобразователя на шероховатой неподготовленной поверхности без использования клея и смачивающей жидкости при контактировании с поверхностью контролируемого изделия в точке или по линии и имеет малые волновые размеры. Однако данный преобразователь не может быть использован в качестве иммерсионного преобразователя, что сужает область использования преобразователя.

Задачей, на решение которой направлено изобретение, является увеличение длины рабочей зоны пьезоэлектрического преобразователя и расширение его диаграммы направленности.

Технический результат заключается в том, что достигается повышение достоверности контроля целостности контролируемого материала.

Задача решается, а технический результат достигается за счет того, что ультразвуковой иммерсионный многоэлементный совмещенный пьезоэлектрический преобразователь содержит герметичный корпус с демпфирующим веществом, пьезоэлементы, установленные внутри корпуса и расположенные в корпусе симметрично относительно акустической оси преобразователя, и линзу, сопряженную с пьезоэлементами со стороны излучающей поверхности пьезоэлементов, при этом пьезоэлементы расположены под острым углом к акустической оси пьезоэлектрического преобразователя, акустические оси пьезоэлементов пересекаются между собой на продольной оси преобразователя в направлении излучения преобразователя, причем пьезоэлементы имеют относительно продольной оси преобразователя попарно одинаковую форму, с электродами на их противоположных поверхностях, подключенными к электрическому герметичному разъему, вектор поляризации всех пьезоэлементов направлен либо в сторону излучения, либо в сторону демпфирующего вещества, электроды пьезоэлементов расположенные с одной стороны последовательно электрически соединены между собой, акустические оси всех пьезоэлементов расположены в одной плоскости, проходящей через продольную ось преобразователя, а линза выполнена общей для всех пьезоэлементов или состоит из отдельных секций, соединенных между собой в местах сопряжения связующим веществом, например клеем или полимерным компаундом.

Линза, выполненная в виде слоя акустически проводящего твердого материала, может иметь толщину S напротив каждого из пьезоэлементов, равную

λ 4 = c 4f , где

λ - длина волны ультразвука в материале линзы;

c - скорость звука в материале линзы;

f - рабочая частота пьезоэлемента.

Линза может иметь клиновидную форму напротив каждого пьезоэлемента в плоскости продольного сечения проходящей через акустические оси пьезоэлементов, а толщина линзы в месте прохождения через нее акустической оси пьезоэлемента равна λ 4 .

Линза может быть выполнена с цилиндрической наружной поверхностью обращенной вогнутой частью в сторону контролируемого материала и выполненной напротив каждого из пьезоэлементов, причем образующая цилиндрической поверхности перпендикулярна плоскости, в которой лежат акустические оси пьезоэлементов, линза имеет наименьшую толщину, равную λ/4, а образующая цилиндрической поверхности в точке наименьшей толщины цилиндрической поверхности пересекается с акустической осью соответствующего пьезоэлемента с увеличением толщины линзы в направлении от этой акустической оси.

Выполнение толщины линзы равной λ 4 позволяет добиться максимальной чувствительности пьезоэлектрического преобразователя за счет эффекта просветления.

Выполнение линзы с описанными выше клиновидными поверхностями позволяет сократить длительность эхоимпульса и увеличить соотношение сигнал/шум.

Выполнение линзы с цилиндрическими поверхностями позволяет, помимо приведенных выше качеств, обеспечить концентрацию энергии акустического поля в заданной области.

На фиг.1 представлен продольный разрез ультразвукового иммерсионного многоэлементного совмещенного пьезоэлектрического преобразователя с двумя пьезоэлементами и линзой с цилиндрическими поверхностями.

На фиг.2 представлен продольный разрез ультразвукового иммерсионного многоэлементного совмещенного пьезоэлектрического преобразователя с пьезоэлементами и линзой с клиновидной формой напротив каждого пьезоэлемента.

Ультразвуковой иммерсионный многоэлементный совмещенный пьезоэлектрический преобразователь содержит герметичный корпус 1 с демпфирующим веществом 2, пьезоэлементы 3, установленные внутри корпуса 1 и расположенные в корпусе 1 симметрично относительно акустической оси 4 преобразователя, и линзу 5, сопряженную с пьезоэлементами 3 со стороны излучающей поверхности пьезоэлементов 3.

Пьезоэлементы 3 расположены под острым углом к акустической оси 4 пьезоэлектрического преобразователя и имеют относительно продольной оси (совпадающей с акустической осью 4) преобразователя попарно одинаковую форму, с электродами на их противоположных поверхностях, подключенными к электрическому герметичному разъему 6. Акустические оси 7 пьезоэлементов 3 пересекаются между собой на продольной оси преобразователя в направлении излучения преобразователя.

Вектор поляризации всех пьезоэлементов 3 направлен либо в сторону излучения, либо в сторону демпфирующего вещества 2. Электроды пьезоэлементов 3 расположенные с одной стороны последовательно электрически соединены между собой. Акустические оси 7 всех пьезоэлементов 3 расположены в одной плоскости, проходящей через продольную ось 4 преобразователя. Линза 5 выполнена общей для всех пьезоэлементов 3 (см. фиг.1) или состоит из отдельных секций 8, соединенных между собой в местах сопряжения связующим веществом, например клеем или полимерным компаундом (см. фиг.2).

Линза 5, выполненная в виде слоя акустически проводящего твердого материала, может иметь толщину S напротив каждого из пьезоэлементов 3, равную

λ 4 = c 4f , где

λ - длина волны ультразвука в материале линзы 5;

c - скорость звука в материале линзы 5;

f - рабочая частота пьезоэлемента 3.

Линза может иметь клиновидную форму (см. фиг.2) напротив каждого пьезоэлемента 3 в плоскости продольного сечения проходящей через акустические оси 7 пьезоэлементов 3, а толщина линзы 5 в месте прохождения через нее акустической оси 7 пьезоэлемента 3 равна λ 4 .

Линза 5 может быть выполнена с цилиндрической наружной поверхностью (см. фиг.1) обращенной вогнутой частью в сторону контролируемого материала и выполненной напротив каждого из пьезоэлементов 3, причем образующая цилиндрической поверхности перпендикулярна плоскости, в которой лежат акустические оси 7 пьезоэлементов 3, линза 5 имеет наименьшую толщину, равную λ/4, а образующая цилиндрической поверхности в точке наименьшей толщины линзы с цилиндрической поверхностью пересекается с акустической осью 7 соответствующего пьезоэлемента 3 с увеличением толщины линзы 5 в направлении от этой акустической оси 7.

Ультразвуковой иммерсионный многоэлементный совмещенный пьезоэлектрический преобразователь работает следующим образом.

После установки преобразователя в жидкости линзой 5 над поверхностью контролируемого материала к выводам электрического герметичного разъема 6 подводят возбуждающее напряжение или в случае приема ультразвуковых колебаний снимают с этих выводов принятый сигнал. В режиме излучения, благодаря последовательному подключению одноименных электродов пьезоэлементов 3 к соответствующим выводом разъема 6, пьезоэлементы 3 колеблются синфазно, излучая в жидкость продольные волны. Волновой фронт достигает поверхности контролируемого объекта и, в зависимости от угла падения, формирует в нем фронт продольных или поперечных волн. При встрече этого фронта с неоднородностью материала или дефектом, формируется отраженный эхоимпульс.

В режиме приема отраженные волны принимаются всеми пьезоэлементами 3 или их частью и, благодаря последовательному соединению одноименных электродов, образуют выходной электрический сигнал на выводах разъема 6.

Размещениие пьезоэлементов 3 описанным выше способом в сочетании с выполнением их с попарно одинаковой формой позволяет увеличить длину рабочей зоны пьезоэлектрического преобразователя и расширить его диаграмму направленности, что в конечном итоге позволяет добиться повышения достоверности контроля целостности контролируемого материала.

Иммерсионный тип контакта преобразователя с контролируемым объектом дает возможность контролировать материалы с шероховатой поверхностью (например, отливки) и длинномерные изделия, а также увеличить срок службы преобразователя.

Возможность концентрации энергии акустического поля в заранее определенной рабочей зоне обеспечивает повышение достоверности контроля в массивных изделиях.

Расширение диаграммы направленности обеспечивает возможность обнаружения произвольно ориентированных дефектов.

Настоящее изобретение может быть использовано для дефектоскопии и толщинометрии материала конструкций в машиностроении, трубопроводном и железнодорожном транспорте.

1. Ультразвуковой иммерсионный многоэлементный совмещенный пьезоэлектрический преобразователь, содержащий герметичный корпус с демпфирующим веществом, пьезоэлементы, установленные внутри корпуса и расположенные в корпусе симметрично относительно акустической оси преобразователя, и линзу, сопряженную с пьезоэлементами со стороны излучающей поверхности пьезоэлементов, отличающийся тем, что пьезоэлементы расположены под острым углом к акустической оси пьезоэлектрического преобразователя, акустические оси пьезоэлементов пересекаются между собой на продольной оси преобразователя в направлении излучения преобразователя, причем пьезоэлементы имеют относительно продольной оси преобразователя попарно одинаковую форму, с электродами на их противоположных поверхностях, подключенными к электрическому герметичному разъему, вектор поляризации всех пьезоэлементов направлен либо в сторону излучения, либо в сторону демпфирующего вещества, электроды пьезоэлементов, расположенные с одной стороны, последовательно электрически соединены между собой, акустические оси всех пьезоэлементов расположены в одной плоскости, проходящей через продольную ось преобразователя, а линза выполнена общей для всех пьезоэлементов или состоит из отдельных секций, соединенных между собой в местах сопряжения связующим веществом, например клеем или полимерным компаундом.

2. Преобразователь по п.1, отличающийся тем, что линза, выполненная в виде слоя акустически проводящего твердого материала, имеет толщину S напротив каждого из пьезоэлементов, равную
λ 4 = c 4f ,
где λ - длина волны ультразвука в материале линзы;
c - скорость звука в материале линзы;
f - рабочая частота пьезоэлемента.

3. Преобразователь по п.1, отличающийся тем, что линза имеет клиновидную форму в плоскости продольного сечения, проходящей через акустические оси пьезоэлементов, а толщина линзы в месте прохождения через нее акустической оси пьезоэлемента равна λ 4 .

4. Преобразователь по п.1, отличающийся тем, что линза выполнена с цилиндрической наружной поверхностью, обращенной вогнутой частью в сторону контролируемого материала и выполненной напротив каждого из пьезоэлементов, причем образующая цилиндрической поверхности перпендикулярна плоскости, в которой лежат акустические оси пьезоэлементов, линза имеет наименьшую толщину, равную λ/4, а образующая цилиндрической поверхности в точке наименьшей толщины линзы с цилиндрической поверхностью пересекается с акустической осью соответствующего пьезоэлемента с увеличением толщины линзы в направлении от этой акустической оси.



 

Похожие патенты:

Использование: для сравнительной оценки свойств материалов. Сущность заключается в том, что осуществляют инденторное нагружение исследуемых материалов, регистрацию сигналов акустической эмиссии в процессе нагружения, обработку сигналов акустической эмиссии и выявление параметра сигналов, информативного за физико-механическую характеристику материала и, соответственно, за эксплуатационное свойство изделия, выполненного из данного материала, при этом в качестве информативного параметра сигнала используют энергию импульсов акустических сигналов, а сравнение эксплуатационных свойств изделий, выполненных из разных исследуемых материалов, производят по величинам накопленной энергии импульсов за время нагружения, в том числе по величине угла наклона касательной на графике зависимости «накопленная величина энергии сигналов - время нагружения материала».

Изобретение относится к медицинской технике, а именно к устройствам для абляции ткани. Устройство содержит катетер с излучателем энергии и фотоакустическим датчиком.

Изобретение относится к способу определения консистенции пищевого материала. Способ определения консистенции пищевого продукта содержит стадии, на которых осуществляют приложение вибрационного импульса с заданной частотой к пищевому материалу, измерение вибрационного отклика пищевого материала на вибрационный импульс и сравнение вибрационного отклика с опорной величиной, определенной перед измерением.

Изобретение относится к железнодорожному транспорту и может быть использовано для контроля технического состояния колесной пары железнодорожного транспорта при его движении по рельсовому пути.

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения влажности. .

Изобретение относится к измерительной технике и может быть использовано для оценки технического состояния работающего длительное время силового высоковольтного энергетического оборудования.

Изобретение относится к способу и устройству для классификации генерирующих звук процессов, например, звуковых сигналов, которые генерируются при рабочих процессах машины или при химических процессах установки.

Изобретение относится к области медицинского приборостроения, в частности к устройствам для ультразвуковой эхо-локации внутренних органов. .

Изобретение относится к области неразрушающих методов контроля биологических объектов. .

Изобретение относится к области неразрушающего контроля и может найти применение при выявлении нарушений соединения полимерного покрытия с металлическими трубами.

Использование: для идентификации водородного охрупчивания легких сплавов на основе титана. Сущность заключается в том, что измеряют зависимость скорости распространения ультразвуковой волны в легких сплавах от содержания в них водорода. Способ отличается тем, что на поверхности металла устанавливают источник и приемник акустического излучения, измеряют скорость распространения УЗ волн в зависимости от углового положения источника и приемника, изменяют расстояние между приемником и датчиком излучения, и при каждом изменении расстояния и угла находят максимальную скорость УЗ волн, соответствующую определенному содержанию водорода в металле, и по эталонной зависимости скорости УЗ волн от концентрации водорода в металле находят концентрацию водорода, соответствующую водородному охрупчиванию легкого сплава. Технический результат: увеличение точности идентификации водородного охрупчивания легких сплавов на основе титана. 3 ил.

Использование: для контроля коррозии. Сущность: заключается в том, что при моделировании поверхности объекта, используя ультразвуковые волны, передаваемые вдоль поверхности, выполняют этапы на которых: передают ультразвуковые волны по путям вдоль поверхности и определяют время распространения ультразвуковых волн по путям. По меньшей мере, некоторые из ультразвуковых волн показывают моду S0 и имеют скорость, зависящую от частоты. Скорость (с) является относительно высокой для частот вплоть до первой точки перегиба (ВР1), уменьшаясь относительно быстро для частот между первой точкой перегиба (ВР1) и второй точкой перегиба (ВР2), и относительно низкой для частот за второй точкой перегиба (ВР2). Ультразвуковые волны имеют частотный диапазон, который лежит в или ниже первой точки перегиба (ВР1). Технический результат: повышение достоверности получаемых данных при выполнении контроля коррозии. 4 н. и 11 з.п. ф-лы, 8 ил.

Использование: для ультразвукового моделирования. Сущность: заключается в том, что получение температурной модели поверхности (3) объекта (2) с использованием ультразвуковых преобразователей (4, 5) содержит этапы, на которых итерационно корректируют температурную модель с использованием измеренных значений времени прохождения ультразвуковых волн и их основанными на модели прогнозами. Ультразвуковые волны, используемые для температурной модели, предпочтительно представляют собой по существу недисперсионные ультразвуковые волны. Способ может дополнительно содержать уровневую модель поверхности (3), причем уровневую модель получают с использованием по существу дисперсионных ультразвуковых волн и корректируют с использованием температурной модели. Технический результат: обеспечение возможности создания температурной модели поверхности, способной выявлять локальные температурные вариации поверхности с повышенным пространственным разрешением. 5 н. и 13 з.п. ф-лы, 6 ил.

Использование: для определения упругих констант делящихся материалов при повышенных температурах. Сущность заключается в том, что установка для определения упругих констант делящихся материалов при повышенных температурах содержит звуководы, снабженные акустическими изоляторами, между концами звуководов размещен образец из делящегося материала, а на противоположных коцах установлены пьезоэлектрические преобразователи, соединенные с генератором и регистрирующей аппаратурой, при этом образец и часть звуководов окружены нагревателем и помещены они в вакуумную камеру, при этом образец соединен с термопарой, вакуумная рабочая камера помещена в герметичный перчаточный бокс и имеет рубашку охлаждения и протоки охлаждения проточной водой. Технический результат: обеспечение возможности проведения ультразвуковых резонансных испытаний делящихся материалов при повышенных температурах, получение значений модуля нормальной упругости и коэффициента Пуассона в зависимости от температуры в диапазоне температур 20-600°C, с одновременной защитой персонала и окружающей среды от воздействия испытуемых делящихся материалов. 2 з.п. ф-лы, 1 ил.

Использование: для контроля конструкций с использованием ультразвука в пространствах с малым зазором. Сущность: заключается в том, что контрольный сканер [1000] имеет низкопрофильное строение, предназначенное для вхождения в узкие пространства и контроля конструкций [10], например сварных соединений [13]. Узлы колесной рамы [1100, 1200] перемещают держатель зонда в сборе [1110] с ультразвуковой (US) решеткой [1400], которая испускает ультразвуковые лучи через конструкцию [10] и принимает отраженные звуковые волны. Держатель зонда в сборе [1110] вытягивается, и ультразвуковой луч отклоняется для контроля в узких местоположениях. Узлы колесной рамы [1100, 1200] катятся на колесах [1140, 1240], которые приводит в движение блок кодирования [1250]. Блок кодирования [1250] обеспечивает определенные местоположения для принятых звуковых волн относительно сварного шва. Местоположения и принятые звуковые волны используются для восстановления сигнала, показывающего дефекты внутри конструкции [10]. Колеса [1140, 1240] могут быть магнитными, чтобы удерживаться на контролируемой конструкции [10]. Тормозная система [1600] может применяться для удержания контрольного сканера [1000] в заданном местоположении. Технический результат: обеспечение возможности контроля узких пространств. 2 н. и 12 з.п. ф-лы, 5 ил.
Использование: для неразрушающего контроля труб. Сущность изобретения заключается в том, что излучают внутрь трубы с одного ее конца серию повторяющихся зондирующих акустических сигналов, разделенных интервалами времени между их повторами в серии, детектируют с помощью микрофона отраженные от дефектов внутреннего объема трубы сигналы, измеряют отраженные сигналы и усредняют результаты по всем измерениям серии сигналов, определяют характер дефекта по амплитудно-временным характеристикам усредненного сигнала, при этом длительность интервалов времени между повторами зондирующих акустических сигналов в серии изменяют от сигнала к сигналу в серии таким образом, чтобы интервал времени перед каждым последующим сигналом отличался от предыдущих интервалов времени на величину не менее длительности зондирующего акустического сигнала. Технический результат: обеспечение возможности исключения влияния посторонних шумов и реверберации на результат измерения.

Использование: для контроля перемешивания среды в виде сырой нефти в резервуаре. Сущность изобретения заключается в том, что в процессе перемешивания поочередно каждым обратимым электроакустическим преобразователем излучают широкополосный акустический сигнал через среду к другим обратимым электроакустическим преобразователям, принимают и преобразуют эти сигналы другими, за исключением излучившего этот широкополосный акустический сигнал, обратимыми электроакустическими преобразователями в соответствующие принятые электрические сигналы, при этом обработку принятых электрических сигналов осуществляют путем вычисления взаимных корреляционных функций каждого из принятых электрических сигналов с широкополосным электрическим сигналом, вычисляют общую ширину корреляционных откликов, о завершении перемешивания нефти судят по стабилизации общей ширины корреляционных откликов. Технический результат: повышение точности выявления неоднородностей среды, а также повышение точности определения степени перемешивания. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к лесной, деревообрабатывающей промышленности и может быть использовано при сертификации древесины на корню в условиях лесного хозяйства и лесозаготовок, а также при сертификации древесины круглых и пиленых древесных материалов в условиях переработки древесного сырья и механической обработки древесины. Cпособ осуществляют введением сравнительных испытаний, хотя бы на одной технологической операции механической обработки древесины, между ультразвуковым испытанием на кернах и хотя бы одним стандартизированным способом испытания на стандартных образцах, например, на прочность древесины на образцах размерами 20×20×30 мм, затем определение значений переходного коэффициента от акустических показателей кернов, извлеченных из растущего дерева или круглых и пиленых лесоматериалов, находящихся в штабеле, к прочности древесины на стандартны, образцах, изготовленных из этих же древесных заготовок, а затем применение полученных значений переходного коэффициента на весь объем партии древесины, заготовленной с одной лесосеки или лесного участка. После взятия кернов изготовляют стандартные образцы, их измеряют ультразвуковым прибором, затем стандартные образцы испытывают на механические показатели древесины, а по результатам испытаний рассчитывают переходные коэффициенты между ультразвуковыми показателями кернов и стандартных образцов, а также переходные коэффициенты между ультразвуковыми показателями кернов и механическими показателями стандартных образцов. Достигается повышение надежности испытаний и расширение функциональных возможностей. 1 н.п., 2 з.п. формулы,1 прим., 3 ил.

Использование: для определения типа дефекта в металлических изделиях. Сущность изобретения заключается в том, что выполняют импульсное облучение исследуемой зоны ультразвуковым излучением, регистрацию исходного отраженного сигнала, его компьютерную обработку для определения информативных параметров, по которым судят о наличии и типе дефекта, при этом к исходному отраженному сигналу от каждого обнаруженного дефекта применяют преобразование Гильберта, получая аналитический сигнал, затем вычисляют модуль аналитического сигнала, получая огибающую исходного сигнала, на огибающей находят моменты времени t0, t1, и t2, соответствующие максимуму амплитуды огибающей и половине ее максимального значения слева и справа от максимума, применяя непрерывное вейвлетное преобразование к аналитическому сигналу, по определенной формуле находят зависимость мгновенной частоты от времени, на которой выбирают для дальнейшего анализа частоты ƒ0, ƒ1 и ƒ2, соответствующие моментам времени t0, t1, и t2, затем используя частоты ƒ0, ƒ1 и ƒ2 формируют новые безразмерные параметры - нормированные девиации частоты ƒr1 и ƒr2, отображают значения ƒr1 и ƒr2 в виде точки на двумерной диаграмме, по расположению которой в определенной области диаграммы судят о типе дефекта. Технический результат: обеспечение возможности расширения возможностей определения типа скрытых дефектов при неразрушающем ультразвуковом контроле. 2 ил.

Использование: для возбуждения и приема симметричных и антисимметричных волн в тонких волноводах. Сущность изобретения заключается в том, что на поверхности волновода закрепляют ультразвуковой преобразователь, который присоединяют к генератору и приемнику электрических сигналов, затем прикладывают электрическое напряжение к преобразователю таким образом, чтобы в волноводе в направлении, перпендикулярном к его оси, излучалась объемная, например, продольная волна, затем принимают, усиливают и обрабатывают эхо-сигнал, создаваемый нормальной волной, возникающей в волноводе за счет частичной трансформации в нем объемной волны в нормальную, при этом дополнительно закрепляют на противоположной стороне волновода соосно к первому преобразователю ультразвуковой преобразователь, акустические параметры которого в пределах не более ±5% отличаются от параметров первого преобразователя, причем электрическое соединение обоих преобразователей производят таким образом, чтобы фазы излучаемых и принимаемых ими сигналов либо совпадали (для случая симметричных нормальных волн), либо имели противоположные знаки (для случая антисимметричных нормальных волн), для чего при излучении и приеме симметричных нормальных волн оба преобразователя электрически соединяют параллельно, а при излучении и приеме антисимметричных нормальных волн преобразователи возбуждают электрическим напряжением противоположной полярности и присоединяют оба преобразователя к различным входам дифференциального усилителя или оба преобразователя электрически соединяют параллельно, а их пьезоэлементы поляризуют в противоположных направлениях. Технический результат: повышение амплитуды принимаемой нормальной волны. 4 ил.
Наверх